These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20116398)

  • 1. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study.
    Yousif N; Purswani N; Bayford R; Nandi D; Bain P; Liu X
    J Neurosci Methods; 2010 Apr; 188(1):105-12. PubMed ID: 20116398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the direct effects of deep brain stimulation using embedded axon models.
    Sotiropoulos SN; Steinmetz PN
    J Neural Eng; 2007 Jun; 4(2):107-19. PubMed ID: 17409485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.
    Miocinovic S; Parent M; Butson CR; Hahn PJ; Russo GS; Vitek JL; McIntyre CC
    J Neurophysiol; 2006 Sep; 96(3):1569-80. PubMed ID: 16738214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep brain stimulation of terminating axons.
    Bower KL; McIntyre CC
    Brain Stimul; 2020; 13(6):1863-1870. PubMed ID: 32919091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of intraoperative subthalamic nucleus DBS on human single-unit activity in the ipsilateral and contralateral subthalamic nucleus.
    Toleikis JR; Metman LV; Pilitsis JG; Barborica A; Toleikis SC; Bakay RA
    J Neurosurg; 2012 May; 116(5):1134-43. PubMed ID: 22339160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current steering to control the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    Brain Stimul; 2008 Jan; 1(1):7-15. PubMed ID: 19142235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model.
    Guo Y; Rubin JE; McIntyre CC; Vitek JL; Terman D
    J Neurophysiol; 2008 Mar; 99(3):1477-92. PubMed ID: 18171706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation.
    Rosenbaum R; Zimnik A; Zheng F; Turner RS; Alzheimer C; Doiron B; Rubin JE
    Neurobiol Dis; 2014 Feb; 62():86-99. PubMed ID: 24051279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal visualization of deep brain stimulation-induced effects in the subthalamic nucleus.
    Yousif N; Borisyuk R; Pavese N; Nandi D; Bain P
    Eur J Neurosci; 2012 Jul; 36(2):2252-9. PubMed ID: 22805069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.
    Hahn PJ; McIntyre CC
    J Comput Neurosci; 2010 Jun; 28(3):425-41. PubMed ID: 20309620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific analysis of the volume of tissue activated during deep brain stimulation.
    Butson CR; Cooper SE; Henderson JM; McIntyre CC
    Neuroimage; 2007 Jan; 34(2):661-70. PubMed ID: 17113789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectivity and Dynamics Underlying Synaptic Control of the Subthalamic Nucleus.
    Steiner LA; Barreda Tomás FJ; Planert H; Alle H; Vida I; Geiger JRP
    J Neurosci; 2019 Mar; 39(13):2470-2481. PubMed ID: 30700533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subthalamic deep brain stimulation alters neuronal firing in canonical pain nuclei in a 6-hydroxydopamine lesioned rat model of Parkinson's disease.
    Gee LE; Walling I; Ramirez-Zamora A; Shin DS; Pilitsis JG
    Exp Neurol; 2016 Sep; 283(Pt A):298-307. PubMed ID: 27373204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead.
    van Dijk KJ; Verhagen R; Bour LJ; Heida C; Veltink PH
    Neuromodulation; 2018 Aug; 21(6):553-561. PubMed ID: 29034586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus.
    Filali M; Hutchison WD; Palter VN; Lozano AM; Dostrovsky JO
    Exp Brain Res; 2004 Jun; 156(3):274-81. PubMed ID: 14745464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation.
    Shils JL; Mei LZ; Arle JE
    Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.