BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20116420)

  • 1. Auditory capabilities of birds in relation to the structural diversity of the basilar papilla.
    Gleich O; Langemann U
    Hear Res; 2011 Mar; 273(1-2):80-8. PubMed ID: 20116420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs.
    Gleich O; Dooling RJ; Manley GA
    Naturwissenschaften; 2005 Dec; 92(12):595-8. PubMed ID: 16231131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative morphological analysis of the inner ear of galliform birds.
    Corfield JR; Krilow JM; Vande Ligt MN; Iwaniuk AN
    Hear Res; 2013 Oct; 304():111-27. PubMed ID: 23871766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Birds--same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models.
    Köppl C
    Hear Res; 2011 Mar; 273(1-2):65-71. PubMed ID: 20430083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibres and their peripheral origin.
    Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1995 Dec; 92(1-2):151-69. PubMed ID: 8647738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral and physiological studies of hearing in birds.
    Sachs MB; Sinnott JM; Hienz RD
    Fed Proc; 1978 Aug; 37(10):2329-35. PubMed ID: 98352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of tonotopy in the auditory periphery.
    Mann ZF; Kelley MW
    Hear Res; 2011 Jun; 276(1-2):2-15. PubMed ID: 21276841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative light and scanning electron microscopic study of the developing auditory organs in the bullfrog: implications on their functional characteristics.
    Shofner WP; Feng AS
    J Comp Neurol; 1984 Mar; 224(1):141-54. PubMed ID: 6609173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychophysical estimates of level-dependent best-frequency shifts in the apical region of the human basilar membrane.
    Lopez-Poveda EA; Barrios LF; Alves-Pinto A
    J Acoust Soc Am; 2007 Jun; 121(6):3646-54. PubMed ID: 17552716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stiffness gradient of the basilar membrane and tonotopia in the internal ear of mammals].
    Prokof'eva LI; Chernyĭ AG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (3):44-50. PubMed ID: 3580419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative aspects of cochlear functional organization in mammals.
    Vater M; Kössl M
    Hear Res; 2011 Mar; 273(1-2):89-99. PubMed ID: 20630478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General pattern and morphological specializations of the avian cochlea.
    Fischer FP
    Scanning Microsc; 1994; 8(2):351-63; discussion 363-4. PubMed ID: 7701304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of frequency in the primary auditory field of the barn owl forebrain.
    Cohen YE; Knudsen EI
    J Neurophysiol; 1996 Dec; 76(6):3682-92. PubMed ID: 8985866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efferent innervation to the auditory basilar papilla of scincid lizards.
    Wibowo E; Brockhausen J; Köppl C
    J Comp Neurol; 2009 Sep; 516(1):74-85. PubMed ID: 19565665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Processing of acoustic stimuli in the inner ear--a review of recent research results].
    Klinke R
    HNO; 1987 Apr; 35(4):139-48. PubMed ID: 2438259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.