These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20116921)

  • 1. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron.
    Xenidis A; Stouraiti C; Papassiopi N
    J Hazard Mater; 2010 May; 177(1-3):929-37. PubMed ID: 20116921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application methods affect phosphorus-induced lead immobilization from a contaminated soil.
    Yoon JK; Cao X; Ma LQ
    J Environ Qual; 2007; 36(2):373-8. PubMed ID: 17255624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles.
    Liu R; Zhao D
    Chemosphere; 2007 Aug; 68(10):1867-76. PubMed ID: 17462708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides.
    Warren GP; Alloway BJ; Lepp NW; Singh B; Bochereau FJ; Penny C
    Sci Total Environ; 2003 Jul; 311(1-3):19-33. PubMed ID: 12826380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of incubation on solubility and mobility of trace metals in two contaminated soils.
    Ma LQ; Dong Y
    Environ Pollut; 2004 Aug; 130(3):301-7. PubMed ID: 15182963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.
    Zou L; Zhang S; Duan D; Liang X; Shi J; Xu J; Tang X
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8888-8902. PubMed ID: 29330821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions.
    Moon DH; Dermatas D
    J Hazard Mater; 2007 Mar; 141(2):388-94. PubMed ID: 16822609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.