These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20116991)

  • 1. The biogenic content of process streams from mechanical-biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?
    Séverin M; Velis CA; Longhurst PJ; Pollard SJ
    Waste Manag; 2010 Jul; 30(7):1171-82. PubMed ID: 20116991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid recovered fuel: materials flow analysis and fuel property development during the mechanical processing of biodried waste.
    Velis CA; Wagland S; Longhurst P; Robson B; Sinfield K; Wise S; Pollard S
    Environ Sci Technol; 2013 Mar; 47(6):2957-65. PubMed ID: 23398118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag; 2014 Aug; 34(8):1398-407. PubMed ID: 24735992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic carbon-enriched and pollutant depleted SRF from commercial and pretreated heterogeneous waste generated by NIR sensor-based sorting.
    Pieber S; Ragossnig A; Pomberger R; Curtis A
    Waste Manag Res; 2012 Apr; 30(4):381-91. PubMed ID: 22363024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.
    Wagland ST; Kilgallon P; Coveney R; Garg A; Smith R; Longhurst PJ; Pollard SJ; Simms N
    Waste Manag; 2011 Jun; 31(6):1176-83. PubMed ID: 21288710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.
    Velis C; Wagland S; Longhurst P; Robson B; Sinfield K; Wise S; Pollard S
    Environ Sci Technol; 2012 Feb; 46(3):1923-31. PubMed ID: 22191490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste.
    Bayard R; Morais Jde A; Ducom G; Achour F; Rouez M; Gourdon R
    J Hazard Mater; 2010 Mar; 175(1-3):23-32. PubMed ID: 19913357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodrying for mechanical-biological treatment of wastes: a review of process science and engineering.
    Velis CA; Longhurst PJ; Drew GH; Smith R; Pollard SJ
    Bioresour Technol; 2009 Jun; 100(11):2747-61. PubMed ID: 19216072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.
    Beckmann M; Pohl M; Bernhardt D; Gebauer K
    Waste Manag Res; 2012 Apr; 30(4):354-69. PubMed ID: 22467662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precision determination for the dynamic respirometric index (DRI) method used for biological stability evaluation on municipal solid waste and derived products.
    Scaglia B; Acutis M; Adani F
    Waste Manag; 2011 Jan; 31(1):2-9. PubMed ID: 20888747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass balance to assess the efficiency of a mechanical-biological treatment.
    de Araújo Morais J; Ducom G; Achour F; Rouez M; Bayard R
    Waste Manag; 2008; 28(10):1791-800. PubMed ID: 18029167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-combustion of solid recovered fuels in coal-fired power plants.
    Thiel S; Thomé-Kozmiensky KJ
    Waste Manag Res; 2012 Apr; 30(4):392-403. PubMed ID: 22143900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample preparation and biomass determination of SRF model mixture using cryogenic milling and the adapted balance method.
    Schnöller J; Aschenbrenner P; Hahn M; Fellner J; Rechberger H
    Waste Manag; 2014 Nov; 34(11):2171-5. PubMed ID: 25060675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
    Fellner J; Rechberger H
    Waste Manag; 2009 May; 29(5):1495-503. PubMed ID: 19157836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of energy recovery from waste in China.
    Dorn T; Flamme S; Nelles M
    Waste Manag Res; 2012 Apr; 30(4):432-41. PubMed ID: 22492261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).
    Sarc R; Lorber KE
    Waste Manag; 2013 Sep; 33(9):1825-34. PubMed ID: 23746983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Korean solid recovered fuels (SRFs): an analysis and comparison of SRFs.
    Choi YS; Han S; Choi HS; Kim SJ
    Waste Manag Res; 2012 Apr; 30(4):442-9. PubMed ID: 22496248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation.
    Jokela JP; Vavilin VA; Rintala JA
    Bioresour Technol; 2005 Mar; 96(4):501-8. PubMed ID: 15491833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and quality assurance for solid recovered fuel.
    Lorber KE; Sarc R; Aldrian A
    Waste Manag Res; 2012 Apr; 30(4):370-80. PubMed ID: 22504629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a low cost MBT prior to landfilling: study of the biological treatment of size reduced MSW without mechanical sorting.
    Lornage R; Redon E; Lagier T; Hébé I; Carré J
    Waste Manag; 2007; 27(12):1755-64. PubMed ID: 17207988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.