These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20117117)

  • 1. Model reduction using a posteriori analysis.
    Whiteley JP
    Math Biosci; 2010 May; 225(1):44-52. PubMed ID: 20117117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second-order algorithm for solving dynamic cell membrane equations.
    Sundnes J; Artebrant R; Skavhaug O; Tveito A
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2546-8. PubMed ID: 19237339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.
    Maybank PJ; Whiteley JP
    Math Biosci; 2014 Feb; 248():146-57. PubMed ID: 24418010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model reduction for initial value ODEs.
    Ambuehl A; Whiteley JP
    Math Biosci; 2021 Jul; 337():108618. PubMed ID: 33878304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations.
    Whiteley JP; Bishop MJ; Gavaghan DJ
    Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical guide to the solution of the bi-domain equations of cardiac electrophysiology.
    Pathmanathan P; Bernabeu MO; Bordas R; Cooper J; Garny A; Pitt-Francis JM; Whiteley JP; Gavaghan DJ
    Prog Biophys Mol Biol; 2010; 102(2-3):136-55. PubMed ID: 20553747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a computational method for imaging the extracellular potassium concentration during regional ischemia.
    Nielsen BF; Cai X; Sundnes J; Tveito A
    Math Biosci; 2009 Aug; 220(2):118-30. PubMed ID: 19520092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus protocol determines the most computationally efficient preconditioner for the bidomain equations.
    Bernabeu MO; Pathmanathan P; Pitt-Francis J; Kay D
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2806-15. PubMed ID: 20876005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An impedance-based catheter positioning system for cardiac mapping and navigation.
    Jiang Y; Farina D; Bar-Tal M; Dössel O
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):1963-70. PubMed ID: 19447697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordinary differential equations with applications in molecular biology.
    Ilea M; Turnea M; Rotariu M
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):347-52. PubMed ID: 23077920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taming the complexity of biological pathways through parallel computing.
    Ballarini P; Guido R; Mazza T; Prandi D
    Brief Bioinform; 2009 May; 10(3):278-88. PubMed ID: 19339382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-order system least squares for elastohydrodynamics with application to flow in compliant blood vessels.
    Heys JJ; DeGroff CG; Orlando WW; Manteuffel TA; McCormick SF
    Biomed Sci Instrum; 2002; 38():277-82. PubMed ID: 12085616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling 3-D compliant blood flow with FOSLS.
    Heys JJ; DeGroff C; Manteuffel T; McCormick S; Tufo H
    Biomed Sci Instrum; 2004; 40():193-9. PubMed ID: 15133957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The finite state projection algorithm for the solution of the chemical master equation.
    Munsky B; Khammash M
    J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.