These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. A master equation formalism for macroscopic modeling of asynchronous irregular activity states. El Boustani S; Destexhe A Neural Comput; 2009 Jan; 21(1):46-100. PubMed ID: 19210171 [TBL] [Abstract][Full Text] [Related]
24. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Brunel N; Hansel D Neural Comput; 2006 May; 18(5):1066-110. PubMed ID: 16595058 [TBL] [Abstract][Full Text] [Related]
25. Quantitative models of Pavlovian conditioning. Vogel EH; Castro ME; Saavedra MA Brain Res Bull; 2004 Apr; 63(3):173-202. PubMed ID: 15145138 [TBL] [Abstract][Full Text] [Related]
26. Neural networks with local receptive fields and superlinear VC dimension. Schmitt M Neural Comput; 2002 Apr; 14(4):919-56. PubMed ID: 11936967 [TBL] [Abstract][Full Text] [Related]
27. A new backpropagation learning algorithm for layered neural networks with nondifferentiable units. Oohori T; Naganuma H; Watanabe K Neural Comput; 2007 May; 19(5):1422-35. PubMed ID: 17381272 [TBL] [Abstract][Full Text] [Related]
28. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Bathellier B; Carleton A; Gerstner W Neural Comput; 2008 Dec; 20(12):2973-3002. PubMed ID: 18533817 [TBL] [Abstract][Full Text] [Related]
29. A stochastic population approach to the problem of stable recruitment hierarchies in spiking neural networks. Günay C; Maida AS Biol Cybern; 2006 Jan; 94(1):33-45. PubMed ID: 16283375 [TBL] [Abstract][Full Text] [Related]
30. Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Lisman JE; Otmakhova NA Hippocampus; 2001; 11(5):551-68. PubMed ID: 11732708 [TBL] [Abstract][Full Text] [Related]
31. A systematic investigation of a neural network for function approximation. Ait Gougam L; Tribeche M; Mekideche-Chafa F Neural Netw; 2008 Nov; 21(9):1311-7. PubMed ID: 18662852 [TBL] [Abstract][Full Text] [Related]
32. Adaptive optimal control without weight transport. Chinta LV; Tweed DB Neural Comput; 2012 Jun; 24(6):1487-518. PubMed ID: 22364503 [TBL] [Abstract][Full Text] [Related]
33. Some questions about unification of conditioning processes, stimulus-response psychology, and neural network models. Dworkin SI; Branch MN J Exp Anal Behav; 1997 Mar; 67(2):214-6. PubMed ID: 9086597 [No Abstract] [Full Text] [Related]
35. Conditioning and time representation in long short-term memory networks. Rivest F; Kalaska JF; Bengio Y Biol Cybern; 2014 Feb; 108(1):23-48. PubMed ID: 24258005 [TBL] [Abstract][Full Text] [Related]
36. Autoshaped choice in artificial neural networks: implications for behavioral economics and neuroeconomics. Burgos JE; García-Leal Ó Behav Processes; 2015 May; 114():63-71. PubMed ID: 25662745 [TBL] [Abstract][Full Text] [Related]
37. A scale-invariant internal representation of time. Shankar KH; Howard MW Neural Comput; 2012 Jan; 24(1):134-93. PubMed ID: 21919782 [TBL] [Abstract][Full Text] [Related]
38. Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive element. Barto AG; Sutton RS Behav Brain Res; 1982 Mar; 4(3):221-35. PubMed ID: 6277346 [TBL] [Abstract][Full Text] [Related]
39. Extinction as new learning versus unlearning: considerations from a computer simulation of the cerebellum. Mauk MD; Ohyama T Learn Mem; 2004; 11(5):566-71. PubMed ID: 15466310 [TBL] [Abstract][Full Text] [Related]
40. An attractor neural network model of classical conditioning. Serulnik SD; Gur M Int J Neural Syst; 1996 Mar; 7(1):1-18. PubMed ID: 8828046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]