These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20117225)

  • 1. Troubleshooting methods for toxicity testing of airborne chemicals in vitro.
    Bakand S; Hayes A
    J Pharmacol Toxicol Methods; 2010; 61(2):76-85. PubMed ID: 20117225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative test methods in inhalation toxicology: challenges and opportunities.
    Costa DL
    Exp Toxicol Pathol; 2008 Jun; 60(2-3):105-9. PubMed ID: 18486462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicological perspectives of inhaled therapeutics and nanoparticles.
    Hayes AJ; Bakand S
    Expert Opin Drug Metab Toxicol; 2014 Jul; 10(7):933-47. PubMed ID: 24810077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.
    Bakand S; Winder C; Khalil C; Hayes A
    Inhal Toxicol; 2005 Dec; 17(13):775-87. PubMed ID: 16195213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhalation toxicology: methodological and regulatory challenges.
    Pauluhn J
    Exp Toxicol Pathol; 2008 Jun; 60(2-3):111-24. PubMed ID: 18468874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct exposure methods for testing native atmospheres.
    Aufderheide M
    Exp Toxicol Pathol; 2005 Jul; 57 Suppl 1():213-26. PubMed ID: 16092729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhalation toxicology.
    Hayes A; Bakand S
    EXS; 2010; 100():461-88. PubMed ID: 20358692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances.
    Rach J; Budde J; Möhle N; Aufderheide M
    J Appl Toxicol; 2014 May; 34(5):506-15. PubMed ID: 23765558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds.
    Bakand S; Winder C; Khalil C; Hayes A
    J Environ Monit; 2006 Jan; 8(1):100-5. PubMed ID: 16395465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative in vitro cytotoxicity assessment of selected gaseous compounds in human alveolar epithelial cells.
    Bakand S; Winder C; Hayes A
    Toxicol In Vitro; 2007 Oct; 21(7):1341-7. PubMed ID: 17574383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental in vitro model for dynamic direct exposure of human cells to airborne contaminants.
    Bakand S; Winder C; Khalil C; Hayes A
    Toxicol Lett; 2006 Aug; 165(1):1-10. PubMed ID: 16488094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the CULTEX(®) radial flow system for in vitro investigation of lung damaging agents.
    Tsoutsoulopoulos A; Möhle N; Aufderheide M; Schmidt A; Thiermann H; Steinritz D
    Toxicol Lett; 2016 Feb; 244():28-34. PubMed ID: 26358518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the Acute Inhalation Toxicity of Airborne Particles by Exposing Cultivated Human Lung Cells at the Air-Liquid Interface.
    Tsoutsoulopoulos A; Gohlsch K; Möhle N; Breit A; Hoffmann S; Krischenowski O; Mückter H; Gudermann T; Thiermann H; Aufderheide M; Steinritz D
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32150152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated in vitro approach for toxicity testing of airborne contaminants.
    Bakand S; Hayes A; Winder C
    J Toxicol Environ Health A; 2007 Oct; 70(19):1604-12. PubMed ID: 17763078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhalation exposure systems: design, methods and operation.
    Wong BA
    Toxicol Pathol; 2007 Jan; 35(1):3-14. PubMed ID: 17325967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles: a review of particle toxicology following inhalation exposure.
    Bakand S; Hayes A; Dechsakulthorn F
    Inhal Toxicol; 2012; 24(2):125-35. PubMed ID: 22260506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of inhalation exposure techniques: strengths and weaknesses.
    Pauluhn J
    Exp Toxicol Pathol; 2005 Jul; 57 Suppl 1():111-28. PubMed ID: 16092719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient approach to study the toxicological effects of complex mixtures.
    Aufderheide M
    Exp Toxicol Pathol; 2008 Jun; 60(2-3):163-80. PubMed ID: 18479892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.