These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20117630)

  • 1. Regenerated cartilage produced by autogenous periosteal grafts: a histologic and mechanical study in rabbits under the influence of continuous passive motion.
    Martin-Hernandez C; Cebamanos-Celma J; Molina-Ros A; Ballester-Jimenez JJ; Ballester-Soleda J
    Arthroscopy; 2010 Jan; 26(1):76-83. PubMed ID: 20117630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit.
    O'Driscoll SW; Salter RB
    Clin Orthop Relat Res; 1986 Jul; (208):131-40. PubMed ID: 3522020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental study of the effect of motion on repairing defect of articular cartilage following autogenous periosteal graft].
    Liu M; Chen W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 1997 Mar; 11(2):109-12. PubMed ID: 9867971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Articular cartilage defects repaired with homograft of mesenchymal stem cells seeded onto medical collagen membrane of guided tissue regeneration].
    Lin J; Wang R; Cheng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Dec; 20(12):1229-34. PubMed ID: 17228689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year.
    O'Driscoll SW; Keeley FW; Salter RB
    J Bone Joint Surg Am; 1988 Apr; 70(4):595-606. PubMed ID: 3356727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit.
    O'Driscoll SW; Keeley FW; Salter RB
    J Bone Joint Surg Am; 1986 Sep; 68(7):1017-35. PubMed ID: 3745239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular origin and evolution of neochondrogenesis in major full-thickness defects of a joint surface treated by free autogenous periosteal grafts and subjected to continuous passive motion in rabbits.
    Zarnett R; Delaney JP; Driscoll SW; Salter RB
    Clin Orthop Relat Res; 1987 Sep; (222):267-74. PubMed ID: 3621731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chondrogenic potential of free autogenous periosteal and fascial grafts for biological resurfacing of major full-thickness defects in joint surfaces (an experimental investigation in the rabbit).
    Argün M; Baktir A; Türk CY; Ustdal M; Okten T; Karakas ES; Akbeyaz O
    Tokai J Exp Clin Med; 1993 Dec; 18(3-6):107-16. PubMed ID: 7701522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periosteal neochondrogenesis for biologically resurfacing joints: its cellular origin.
    Zarnett R; Salter RB
    Can J Surg; 1989 May; 32(3):171-4. PubMed ID: 2713771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of marrow stromal cells derived chondrocytes on repair of full-thickness defects of rabbit articular cartilage].
    Wang WM; Hu YY
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jan; 18(1):58-62. PubMed ID: 14768092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Chondrogenic potential of a free autogenous periosteal graft for biological resurfacing over a half-thickness defect in a joint surface: an experimental study].
    Naito K
    Nihon Seikeigeka Gakkai Zasshi; 1995 Sep; 69(9):767-75. PubMed ID: 8530891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of different mechanical environments on repair of cartilage defect with rabbit marrow mesenchymal stem cells].
    Wang G; Liu Y; Shan YX
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Mar; 18(2):96-9. PubMed ID: 15065405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure.
    Mukherjee N; Saris DB; Schultz FM; Berglund LJ; An KN; O' Driscoll SW
    J Orthop Res; 2001 Jul; 19(4):524-30. PubMed ID: 11518256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental research on repair of rabbit articular cartilage deffects with composite of autologous cell-carriers].
    Bai T; Shu J; Wang J; Lu J; Li W; Pu B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Apr; 22(4):487-91. PubMed ID: 18575455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cellular origin of cartilage-like tissue after periosteal transplantation of full-thickness articular cartilage defects: an experimental study using transgenic rats expressing green fluorescent protein.
    Shinomiya R; Ochi M; Adachi N; Hachisuka H; Natsu K; Yasunaga Y
    Acta Orthop; 2005 Dec; 76(6):920-6. PubMed ID: 16470452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: mechanical and histological evaluations from 6-48 weeks.
    Messner K
    J Biomed Mater Res; 1993 Dec; 27(12):1527-32. PubMed ID: 8113240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologic resurfacing of a major joint defect with cryopreserved allogeneic periosteum under the influence of continuous passive motion in a rabbit model.
    Kreder HJ; Moran M; Keeley FW; Salter RB
    Clin Orthop Relat Res; 1994 Mar; (300):288-96. PubMed ID: 8131351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neochondrogenesis in free intraarticular periosteal autografts in an immobilized and paralyzed limb. An experimental investigation in the rabbit.
    Delaney JP; O'Driscoll SW; Salter RB
    Clin Orthop Relat Res; 1989 Nov; (248):278-82. PubMed ID: 2805492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.
    Yan H; Yu C
    Arthroscopy; 2007 Feb; 23(2):178-87. PubMed ID: 17276226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.