BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20117786)

  • 1. New separation methodologies for the distinction of the growth phases of Saccharomyces cerevisiae cell cycle.
    Lainioti GCh; Kapolos J; Koliadima A; Karaiskakis G
    J Chromatogr A; 2010 Mar; 1217(11):1813-20. PubMed ID: 20117786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of the influence of temperature and initial glucose concentration on the fermentation process in the presence of Saccharomyces cerevisiae yeast strain immobilized on starch gels by reversed-flow gas chromatography.
    Lainioti GCh; Kapolos J; Koliadima A; Karaiskakis G
    Prep Biochem Biotechnol; 2012; 42(5):489-506. PubMed ID: 22897770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approaches to the kinetic study of alcoholic fermentation by chromatographic techniques.
    Lainioti GCh; Karaiskakis G
    J Chromatogr Sci; 2013 Sep; 51(8):764-79. PubMed ID: 23357045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of viable yeast cells by gravitational field-flow fractionation with fluorescence detection.
    Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2004; 20(2):613-8. PubMed ID: 15059009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-flow fractionation as analytical technique for the characterization of dry yeast: correlation with wine fermentation activity.
    Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2003; 19(6):1786-91. PubMed ID: 14656157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range.
    Kopsahelis N; Nisiotou A; Kourkoutas Y; Panas P; Nychas GJ; Kanellaki M
    Bioresour Technol; 2009 Oct; 100(20):4854-62. PubMed ID: 19520567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corn starch gel for yeast cell entrapment. A view for catalysis of wine fermentation.
    Kandylis P; Goula A; Koutinas AA
    J Agric Food Chem; 2008 Dec; 56(24):12037-45. PubMed ID: 19035657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex.
    Belloch C; Orlic S; Barrio E; Querol A
    Int J Food Microbiol; 2008 Feb; 122(1-2):188-95. PubMed ID: 18222562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatiles formation from grape must fermentation using a cryophilic and thermotolerant yeast.
    Kopsahelis N; Bosnea L; Kanellaki M; Koutinas AA
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1183-98. PubMed ID: 22328258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of fluorescent probes for determination of yeast cell viability by gravitational field-flow fractionation.
    Garcia MT; Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2006; 22(3):847-52. PubMed ID: 16739970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process.
    Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature on the yeast cell cycle analyzed by flow cytometry.
    Vanoni M; Vai M; Frascotti G
    Cytometry; 1984 Sep; 5(5):530-3. PubMed ID: 6386390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains.
    Faga BA; Wilkins MR; Banat IM
    Bioresour Technol; 2010 Apr; 101(7):2273-9. PubMed ID: 19939673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous ethanol production in a nonconventional five-stage system operating with yeast cell recycling at elevated temperatures.
    Laluce C; Souza CS; Abud CL; Gattas EA; Walker GM
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):140-4. PubMed ID: 12242636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae.
    van Uden N; da Cruz Duarte H
    Z Allg Mikrobiol; 1981; 21(10):743-50. PubMed ID: 7039151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.
    Amillastre E; Aceves-Lara CA; Uribelarrea JL; Alfenore S; Guillouet SE
    Bioresour Technol; 2012 Aug; 117():242-50. PubMed ID: 22617033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.