These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20117979)

  • 41. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.
    Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Paste-like inorganic bone matrix: preclinical testing of a prototype preparation in the porcine calvaria.
    Busenlechner D; Tangl S; Fitzl C; Bernhart T; Gruber R; Watzek G
    Clin Oral Implants Res; 2009 Oct; 20(10):1099-104. PubMed ID: 19681965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Periodontal repair in dogs: examiner reproducibility in the supraalveolar periodontal defect model.
    Koo KT; Polimeni G; Albandar JM; Wikesjö UM
    J Clin Periodontol; 2004 Jun; 31(6):439-42. PubMed ID: 15142212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bone tissue engineering: hope vs hype.
    Rose FR; Oreffo RO
    Biochem Biophys Res Commun; 2002 Mar; 292(1):1-7. PubMed ID: 11890663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Changes in peripheral blood T lymphocyte subsets of rabbits in early stage after transplantation of tissue engineered bone constituted by biologically-derived scaffold].
    Li Y; Yang Z; Qin T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):130-4. PubMed ID: 17357458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on dentin grafts to bone defects in rabbit tibia and mandible; development of an experimental model.
    Andersson L; Ramzi A; Joseph B
    Dent Traumatol; 2009 Feb; 25(1):78-83. PubMed ID: 19208015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques.
    Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of an injectable bone graft substitute in tibial metaphyseal fractures.
    Watson JT
    Orthopedics; 2004 Jan; 27(1 Suppl):s103-7. PubMed ID: 14763538
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Osteoplastic effectiveness of mineralized bone matrix].
    Morfologiia; 2013; 143(1):63-8. PubMed ID: 23805618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Injectable gels for tissue/organ repair.
    Burdick JA
    Biomed Mater; 2012 Apr; 7(2):020201. PubMed ID: 22456631
    [No Abstract]   [Full Text] [Related]  

  • 52. [Implantation of bone substitutes for tibial head fractures].
    Heiss C; Schieker M; Schnettler R
    Unfallchirurg; 2008 Aug; 111(8):621-7. PubMed ID: 18704541
    [No Abstract]   [Full Text] [Related]  

  • 53. Bone regeneration with biomaterials and active molecules delivery.
    D' Este M; Eglin D; Alini M; Kyllonen L
    Curr Pharm Biotechnol; 2015; 16(7):582-605. PubMed ID: 25658379
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Warning About the Use of Critical-Size Defects for the Translational Study of Bone Repair: Analysis of a Sheep Tibial Model.
    Lammens J; Maréchal M; Geris L; Van der Aa J; Van Hauwermeiren H; Luyten FP; Delport H
    Tissue Eng Part C Methods; 2017 Nov; 23(11):694-699. PubMed ID: 28594312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo systemic toxicity assessment of an oxidized dextrin-based hydrogel and its effectiveness as a carrier and stabilizer of granular synthetic bone substitutes.
    Pereira I; Fraga S; Maltez L; Requicha J; Guardão L; Oliveira J; Prada J; Alves H; Santos JD; Teixeira JP; Pereira JE; Soares R; Gama FM
    J Biomed Mater Res A; 2019 Aug; 107(8):1678-1689. PubMed ID: 30920095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revascularized periosteum transplantations.
    van den Wildenberg FA; Goris RJ; Boetes C
    Eur Surg Res; 1983; 15(2):110-3. PubMed ID: 6852075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preclinical evaluation of injectable bone substitute materials.
    Bongio M; van den Beucken JJ; Leeuwenburgh SC; Jansen JA
    J Tissue Eng Regen Med; 2015 Mar; 9(3):191-209. PubMed ID: 23135814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanomaterial-based bone regeneration.
    Li Y; Liu C
    Nanoscale; 2017 Apr; 9(15):4862-4874. PubMed ID: 28358401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Contact microroentgenography in study of regeneration of bone tissue].
    Lopukhin IuM; Okhotskiĭ VP; Savvin VN; Gerasimov VI
    Vestn Akad Med Nauk SSSR; 1968 Jan; 23(1):63-7. PubMed ID: 5740119
    [No Abstract]   [Full Text] [Related]  

  • 60. [Medullographic research on the behavior of venous circulation in the evolution of bone callus in diaphysial fractures of the tibia].
    Fregnani L
    Chir Organi Mov; 1966; 55(3):173-86. PubMed ID: 5984266
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.