BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 20118311)

  • 1. Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
    Cheng B; Fry SN; Huang Q; Deng X
    J Exp Biol; 2010 Feb; 213(4):602-12. PubMed ID: 20118311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.
    Dickson WB; Polidoro P; Tanner MM; Dickinson MH
    J Exp Biol; 2010 Sep; 213(Pt 17):3047-61. PubMed ID: 20709933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning behaviour depends on frictional damping in the fruit fly Drosophila.
    Hesselberg T; Lehmann FO
    J Exp Biol; 2007 Dec; 210(Pt 24):4319-34. PubMed ID: 18055621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wingbeat time and the scaling of passive rotational damping in flapping flight.
    Hedrick TL; Cheng B; Deng X
    Science; 2009 Apr; 324(5924):252-5. PubMed ID: 19359586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aerodynamics of free-flight maneuvers in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    Science; 2003 Apr; 300(5618):495-8. PubMed ID: 12702878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body saccades of Drosophila consist of stereotyped banked turns.
    Muijres FT; Elzinga MJ; Iwasaki NA; Dickinson MH
    J Exp Biol; 2015 Mar; 218(Pt 6):864-75. PubMed ID: 25657212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2007 Jun; 210(Pt 11):1912-24. PubMed ID: 17515417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.
    Park H; Choi H
    Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering.
    Ramamurti R; Sandberg WC
    J Exp Biol; 2007 Mar; 210(Pt 5):881-96. PubMed ID: 17297147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking.
    Fontaine EI; Zabala F; Dickinson MH; Burdick JW
    J Exp Biol; 2009 May; 212(Pt 9):1307-23. PubMed ID: 19376952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster.
    Bender JA; Dickinson MH
    J Exp Biol; 2006 Dec; 209(Pt 23):4597-606. PubMed ID: 17114395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
    Du G; Sun M
    J Theor Biol; 2012 May; 300():19-28. PubMed ID: 22266123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.
    Faruque IA; Humbert JS
    J Theor Biol; 2014 Dec; 363():198-204. PubMed ID: 25128237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.