These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20118347)

  • 1. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance.
    Marcora S
    J Appl Physiol (1985); 2010 Feb; 108(2):454-6; discussion 456-7. PubMed ID: 20118347
    [No Abstract]   [Full Text] [Related]  

  • 2. Central effects of mouth rinses on endurance and strength performance.
    Tan SH; Khong TK; Selvanayagam VS; Yusof A
    Eur J Appl Physiol; 2024 Feb; 124(2):403-415. PubMed ID: 38038740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gut-muscle axis shapes exercise performance.
    Chaffer TJ; Jafarnezhad-Ansariha F
    J Physiol; 2023 Aug; 601(16):3445-3446. PubMed ID: 37232135
    [No Abstract]   [Full Text] [Related]  

  • 4. Considerations for assessing sex differences in performance fatiguability.
    Alvar B; O'Bryan SJ; Harris DM
    J Physiol; 2024 May; 602(9):1889-1891. PubMed ID: 38606983
    [No Abstract]   [Full Text] [Related]  

  • 5. Afferent feedback from fatigued locomotor muscles is important, but not limiting, for endurance exercise performance.
    Smirmaul BP; Fontes EB; Noakes TD
    J Appl Physiol (1985); 2010 Feb; 108(2):458. PubMed ID: 20135834
    [No Abstract]   [Full Text] [Related]  

  • 6. Locomotor muscle fatigue is not critically regulated after prior upper body exercise.
    Johnson MA; Sharpe GR; Williams NC; Hannah R
    J Appl Physiol (1985); 2015 Oct; 119(7):840-50. PubMed ID: 26272315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooling at Tokyo 2020: the why and how for endurance and team sport athletes.
    Taylor L; Carter S; Stellingwerff T
    Br J Sports Med; 2020 Nov; 54(21):1243-1245. PubMed ID: 32816792
    [No Abstract]   [Full Text] [Related]  

  • 8. Heat alleviation strategies for athletic performance: A review and practitioner guidelines.
    Gibson OR; James CA; Mee JA; Willmott AGB; Turner G; Hayes M; Maxwell NS
    Temperature (Austin); 2020; 7(1):3-36. PubMed ID: 32166103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Heating: Reviewing Practical Heat Acclimation Strategies for Endurance Athletes.
    Heathcote SL; Hassmén P; Zhou S; Stevens CJ
    Front Physiol; 2018; 9():1851. PubMed ID: 30618849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Endurance Performance by Periodization of Carbohydrate Intake: "Sleep Low" Strategy.
    Marquet LA; Brisswalter J; Louis J; Tiollier E; Burke LM; Hawley JA; Hausswirth C
    Med Sci Sports Exerc; 2016 Apr; 48(4):663-72. PubMed ID: 26741119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output.
    Amann M; Venturelli M; Ives SJ; McDaniel J; Layec G; Rossman MJ; Richardson RS
    J Appl Physiol (1985); 2013 Aug; 115(3):355-64. PubMed ID: 23722705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central and peripheral fatigue: interaction during cycling exercise in humans.
    Amann M
    Med Sci Sports Exerc; 2011 Nov; 43(11):2039-45. PubMed ID: 21502884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance.
    Pageaux B
    Sports Med; 2014 Sep; 44(9):1319-20. PubMed ID: 24809249
    [No Abstract]   [Full Text] [Related]  

  • 14. Physical Exercise to Redynamize Interoception in Substance use Disorders.
    Brevers D; Billieux J; de Timary P; Desmedt O; Maurage P; Perales JC; Suárez-Suárez S; Bechara A
    Curr Neuropharmacol; 2024; 22(6):1047-1063. PubMed ID: 36918784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test-retest reliability of a 30-min fixed perceived effort cycling exercise.
    O'Malley CA; Fullerton CL; Mauger AR
    Eur J Appl Physiol; 2023 Apr; 123(4):721-735. PubMed ID: 36436029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Paced Endurance Performance and Cerebral Hemodynamics of the Prefrontal Cortex: A Scoping Review of Methodology and Findings.
    Hyland-Monks R; Marchant D; Cronin L
    Percept Mot Skills; 2022 Aug; 129(4):1089-1114. PubMed ID: 35609231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disturbance of desire-goal motivational dynamics during different exercise intensity domains.
    Taylor IM; Whiteley S; Ferguson RA
    Scand J Med Sci Sports; 2022 Apr; 32(4):798-806. PubMed ID: 35037710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Cognitive and Physical Effort Exertion on Physical Effort Decisions: A Pilot Experiment.
    van As S; Beckers DGJ; Geurts SAE; Kompier MAJ; Husain M; Veling H
    Front Psychol; 2021; 12():645037. PubMed ID: 34795608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Prior Cognitive Exertion on Physical Performance: A Systematic Review and Meta-analysis.
    Brown DMY; Graham JD; Innes KI; Harris S; Flemington A; Bray SR
    Sports Med; 2020 Mar; 50(3):497-529. PubMed ID: 31873926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Acute Normobaric Hypoxia on Non-linear Dynamics of Cardiac Autonomic Activity During Constant Workload Cycling Exercise.
    Gronwald T; Hoos O; Hottenrott K
    Front Physiol; 2019; 10():999. PubMed ID: 31427992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.