BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 20118374)

  • 1. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine.
    von Ohle C; Gieseke A; Nistico L; Decker EM; DeBeer D; Stoodley P
    Appl Environ Microbiol; 2010 Apr; 76(7):2326-34. PubMed ID: 20118374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials.
    Lee ES; de Josselin de Jong E; Jung HI; Kim BI
    J Biomed Opt; 2018 Jan; 23(1):1-6. PubMed ID: 29318813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization.
    Ccahuana-Vásquez RA; Cury JA
    Braz Oral Res; 2010; 24(2):135-41. PubMed ID: 20658029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms.
    Fabbri S; Johnston DA; Rmaile A; Gottenbos B; De Jager M; Aspiras M; Starke EM; Ward MT; Stoodley P
    J Dent Res; 2016 Dec; 95(13):1494-1500. PubMed ID: 27554642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
    Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R
    J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ.
    de Souza ME; Clerici DJ; Verdi CM; Fleck G; Quatrin PM; Spat LE; Bonez PC; Santos CFD; Antoniazzi RP; Zanatta FB; Gundel A; Martinez DST; de Almeida Vaucher R; Santos RCV
    Microb Pathog; 2017 Dec; 113():432-437. PubMed ID: 29162482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of planktonic versus attached Streptococcus sanguinis cells to chlorhexidine.
    Decker EM; Weiger R; von Ohle C; Wiech I; Brecx M
    Clin Oral Investig; 2003 Jun; 7(2):98-102. PubMed ID: 12709846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effect of two chlorhexidine preparations on biofilm bacteria in vitro: a three-dimensional quantitative analysis.
    Shen Y; Qian W; Chung C; Olsen I; Haapasalo M
    J Endod; 2009 Jul; 35(7):981-5. PubMed ID: 19567319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of substratum on the pH response of Streptococcus mutans biofilms and on the susceptibility to 0.2% chlorhexidine.
    Deng DM; Buijs MJ; ten Cate JM
    Eur J Oral Sci; 2004 Feb; 112(1):42-7. PubMed ID: 14871192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of propidium monoazide treatment on the measured composition of polymicrobial biofilms after treatment with chlorhexidine.
    Exterkate RA; Zaura E; Buijs MJ; Koopman J; Crielaard W; ten Cate JM
    Caries Res; 2014; 48(4):291-8. PubMed ID: 24513631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ chlorhexidine substantivity on saliva and plaque-like biofilm: influence of circadian rhythm.
    Tomás I; García-Caballero L; López-Alvar E; Suárez-Cunqueiro M; Diz P; Seoane J
    J Periodontol; 2013 Nov; 84(11):1662-72. PubMed ID: 23327586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of an enamel matrix protein derivative (Emdogain) on ex vivo dental plaque vitality.
    Sculean A; Auschill TM; Donos N; Brecx M; Arweiler NB
    J Clin Periodontol; 2001 Nov; 28(11):1074-8. PubMed ID: 11686830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo evaluations of glass-ionomer cement containing chlorhexidine for Atraumatic Restorative Treatment.
    Duque C; Aida KL; Pereira JA; Teixeira GS; Caldo-Teixeira AS; Perrone LR; Caiaffa KS; Negrini TC; Castilho ARF; Costa CAS
    J Appl Oral Sci; 2017; 25(5):541-550. PubMed ID: 29069152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies.
    van de Sande FH; Azevedo MS; Lund RG; Huysmans MC; Cenci MS
    Biofouling; 2011 Oct; 27(9):1057-63. PubMed ID: 22044385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-biofilm activity of chlorhexidine-releasing elastomerics against dental microcosm biofilms.
    Choi JH; Jung EH; Lee ES; Jung HI; Kim BI
    J Dent; 2022 Jul; 122():104153. PubMed ID: 35526753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization.
    Thurnheer T; Belibasakis GN
    Arch Oral Biol; 2018 May; 89():77-83. PubMed ID: 29482049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.
    Maske TT; Brauner KV; Nakanishi L; Arthur RA; van de Sande FH; Cenci MS
    Biofouling; 2016; 32(3):339-48. PubMed ID: 26905384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the effects of chlorhexidine on oral biofilm vitality and structure based on viability profiling and an indicator of membrane integrity.
    Hope CK; Wilson M
    Antimicrob Agents Chemother; 2004 May; 48(5):1461-8. PubMed ID: 15105093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro.
    Du T; Shi Q; Shen Y; Cao Y; Ma J; Lu X; Xiong Z; Haapasalo M
    J Endod; 2013 Nov; 39(11):1438-43. PubMed ID: 24139270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms.
    Peng X; Han Q; Zhou X; Chen Y; Huang X; Guo X; Peng R; Wang H; Peng X; Cheng L
    Drug Deliv; 2022 Dec; 29(1):561-573. PubMed ID: 35156501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.