BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20118408)

  • 1. Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation.
    Borbouse L; Dick GM; Payne GA; Berwick ZC; Neeb ZP; Alloosh M; Bratz IN; Sturek M; Tune JD
    Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1182-9. PubMed ID: 20118408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of BK(Ca) channels to local metabolic coronary vasodilation: Effects of metabolic syndrome.
    Borbouse L; Dick GM; Payne GA; Payne BD; Svendsen MC; Neeb ZP; Alloosh M; Bratz IN; Sturek M; Tune JD
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H966-73. PubMed ID: 20044440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels.
    Berwick ZC; Payne GA; Lynch B; Dick GM; Sturek M; Tune JD
    Microcirculation; 2010 Nov; 17(8):600-7. PubMed ID: 21044214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired function of coronary BK(Ca) channels in metabolic syndrome.
    Borbouse L; Dick GM; Asano S; Bender SB; Dincer UD; Payne GA; Neeb ZP; Bratz IN; Sturek M; Tune JD
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1629-37. PubMed ID: 19749164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Types of potassium channels involved in coronary reactive hyperemia depend on duration of preceding ischemia in rat hearts.
    Shinoda M; Toki Y; Murase K; Mokuno S; Okumura K; Ito T
    Life Sci; 1997; 61(10):997-1007. PubMed ID: 9296338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation.
    Dick GM; Bratz IN; Borbouse L; Payne GA; Dincer UD; Knudson JD; Rogers PA; Tune JD
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2371-81. PubMed ID: 18375717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of potassium channels in coronary vasodilation.
    Dick GM; Tune JD
    Exp Biol Med (Maywood); 2010 Jan; 235(1):10-22. PubMed ID: 20404014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of voltage-dependent K⁺ channels to metabolic control of coronary blood flow.
    Berwick ZC; Dick GM; Moberly SP; Kohr MC; Sturek M; Tune JD
    J Mol Cell Cardiol; 2012 Apr; 52(4):912-9. PubMed ID: 21771599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KCa+ channels contribute to exercise-induced coronary vasodilation in swine.
    Merkus D; Sorop O; Houweling B; Hoogteijling BA; Duncker DJ
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2090-7. PubMed ID: 16699076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels.
    Noblet JN; Owen MK; Goodwill AG; Sassoon DJ; Tune JD
    Arterioscler Thromb Vasc Biol; 2015 Jun; 35(6):1393-400. PubMed ID: 25838427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between A(2A) adenosine receptors, hydrogen peroxide, and KATP channels in coronary reactive hyperemia.
    Sharifi-Sanjani M; Zhou X; Asano S; Tilley S; Ledent C; Teng B; Dick GM; Mustafa SJ
    Am J Physiol Heart Circ Physiol; 2013 May; 304(10):H1294-301. PubMed ID: 23525711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.
    Ishibashi Y; Duncker DJ; Zhang J; Bache RJ
    Circ Res; 1998 Feb; 82(3):346-59. PubMed ID: 9486663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation.
    Aversano T; Ouyang P; Silverman H
    Circ Res; 1991 Sep; 69(3):618-22. PubMed ID: 1651815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome.
    Bratz IN; Dick GM; Tune JD; Edwards JM; Neeb ZP; Dincer UD; Sturek M
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2489-96. PubMed ID: 18390821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure-flow autoregulation.
    Berwick ZC; Moberly SP; Kohr MC; Morrical EB; Kurian MM; Dick GM; Tune JD
    Basic Res Cardiol; 2012 May; 107(3):264. PubMed ID: 22466959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of K+ATP channels in coronary vasodilation during exercise.
    Duncker DJ; Van Zon NS; Altman JD; Pavek TJ; Bache RJ
    Circulation; 1993 Sep; 88(3):1245-53. PubMed ID: 8353886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inhibition of ATP-sensitive potassium channels on metabolic vasodilation in the human forearm.
    Farouque HM; Meredith IT
    Clin Sci (Lond); 2003 Jan; 104(1):39-46. PubMed ID: 12519086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of ATP-sensitive K+ channels attenuates preconditioning effect on myocardial metabolism in swine: myocardial metabolism and ATP-sensitive K+ channels.
    Yokota R; Tanaka M; Yamasaki K; Araki M; Miyamae M; Maeda T; Koga K; Yabuuchi Y; Sasayama S
    Int J Cardiol; 1998 Dec; 67(3):225-36. PubMed ID: 9894703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms underlying cutaneous pressure-induced vasodilation: in vivo involvement of potassium channels.
    Garry A; Sigaudo-Roussel D; Merzeau S; Dumont O; Saumet JL; Fromy B
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H174-80. PubMed ID: 15734881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of myocardial oxygen delivery in response to graded reductions in hematocrit: role of K
    Kiel AM; Goodwill AG; Noblet JN; Barnard AL; Sassoon DJ; Tune JD
    Basic Res Cardiol; 2017 Sep; 112(6):65. PubMed ID: 28965130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.