These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20119229)

  • 1. Remote measurement of smoke plume transmittance using lidar.
    Cook CS; Bethke GW; Conner WD
    Appl Opt; 1972 Aug; 11(8):1742-8. PubMed ID: 20119229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote measurement of HCI, CH(4), and N(2)O using a single-ended chemical-laser lidar system.
    Murray ER; van der Laan JE; Hawley JG
    Appl Opt; 1976 Dec; 15(12):3140-8. PubMed ID: 20168405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive remote smoke plume opacity sensing: a technique.
    Lilienfeld P; Woker G; Stern R; McVay L
    Appl Opt; 1981 Mar; 20(5):800-6. PubMed ID: 20309207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote monitoring of air pollutant emissions from point sources by a mobile lidar/sodar system.
    Schröter M; Obermeier A; Brüggemann D; Plechschmidt M; Klemm O
    J Air Waste Manag Assoc; 2003 Jun; 53(6):716-23. PubMed ID: 12828331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative remote measurements of pollutants from stationary sources using Raman lidar.
    Poultney SK; Brumfield ML; Siviter JH
    Appl Opt; 1977 Dec; 16(12):3180-2. PubMed ID: 20174324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of smoke plume and layer heights using scanning lidar data.
    Kovalev VA; Petkov A; Wold C; Urbanski S; Min Hao W
    Appl Opt; 2009 Oct; 48(28):5287-94. PubMed ID: 19798367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size.
    Uthe EE; Morley BM; Nielsen NB
    Appl Opt; 1982 Feb; 21(3):460-3. PubMed ID: 20372478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne Lidar Measurements of a Smoke Plume Produced by a Controlled Burn of Crude Oil on the Ocean.
    Ross JL; Waggoner AP; Hobbs PV; Ferek RJ
    J Air Waste Manag Assoc; 1996 Apr; 46(4):327-334. PubMed ID: 28079483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment.
    Müller D; Kolgotin A; Mattis I; Petzold A; Stohl A
    Appl Opt; 2011 May; 50(14):2069-79. PubMed ID: 21556108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Lagrangian model estimates to light detection and ranging (LIDAR) measurements of dust plumes from field tilling.
    Wang J; Hiscox AL; Miller DR; Meyer TH; Sammis TW
    J Air Waste Manag Assoc; 2009 Nov; 59(11):1370-8. PubMed ID: 19947118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.
    Trzepla-Nabaglo K; Shiraki R; Holmén BA
    J Hazard Mater; 2006 Apr; 132(1):14-25. PubMed ID: 16442218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site.
    Rojas-Palma C; Aage HK; Astrup P; Bargholz K; Drews M; Jørgensen HE; Korsbech U; Lauritzen B; Mikkelsen T; Thykier-Nielsen S; Van Ammel R
    Radiat Prot Dosimetry; 2004; 108(2):161-8. PubMed ID: 14978295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Spray Drift with a Specifically Designed Lidar System.
    Gregorio E; Torrent X; Planas de Martí S; Solanelles F; Sanz R; Rocadenbosch F; Masip J; Ribes-Dasi M; Rosell-Polo JR
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.
    Su J; McCormick MP; Liu Z; Lee RB; Leavor KR; Lei L
    Opt Lett; 2012 May; 37(9):1595-7. PubMed ID: 22555749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the smoke-plume heights and their dynamics with ground-based scanning lidar.
    Kovalev V; Petkov A; Wold C; Urbanski S; Hao WM
    Appl Opt; 2015 Mar; 54(8):2011-7. PubMed ID: 25968377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar.
    Endemann M; Byer RL
    Appl Opt; 1981 Sep; 20(18):3211-7. PubMed ID: 20333123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO(2) laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes.
    Carlisle CB; van der Laan JE; Carr LW; Adam P; Chiaroni JP
    Appl Opt; 1995 Sep; 34(27):6187-200. PubMed ID: 21060462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.
    Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X
    Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].
    Li A; Xie PH; Liu WQ; Liu JG; Dou K; Lin YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2214-7. PubMed ID: 19123375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.