These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20119640)

  • 21. The same mutation in Gsalpha and transducin alpha reveals behavioral differences between these highly homologous G protein alpha-subunits.
    Zurita AR; Birnbaumer L
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2363-8. PubMed ID: 18258741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction.
    Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E
    Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. G-protein betagamma-subunits contribute to the coupling specificity of the beta2-adrenergic receptor to G(s).
    Kühn B; Christel C; Wieland T; Schultz G; Gudermann T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Mar; 365(3):231-41. PubMed ID: 11882919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and characterization of pepducins as Gs-biased allosteric agonists.
    Carr R; Du Y; Quoyer J; Panettieri RA; Janz JM; Bouvier M; Kobilka BK; Benovic JL
    J Biol Chem; 2014 Dec; 289(52):35668-84. PubMed ID: 25395624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microsecond Molecular Dynamics Simulations Provide Insight into the Allosteric Mechanism of the Gs Protein Uncoupling from the β2 Adrenergic Receptor.
    Sun X; Ågren H; Tu Y
    J Phys Chem B; 2014 Dec; 118(51):14737-44. PubMed ID: 25453446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper and zinc inhibit Galphas function: a nucleotide-free state of Galphas induced by Cu2+ and Zn2+.
    Gao X; Du Z; Patel TB
    J Biol Chem; 2005 Jan; 280(4):2579-86. PubMed ID: 15546818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. G protein-coupled receptor kinase 4gamma interacts with inactive Galpha(s) and Galpha13.
    Keever LB; Jones JE; Andresen BT
    Biochem Biophys Res Commun; 2008 Mar; 367(3):649-55. PubMed ID: 18190783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into partial agonism by observing multiple equilibria for ligand-bound and G
    Solt AS; Bostock MJ; Shrestha B; Kumar P; Warne T; Tate CG; Nietlispach D
    Nat Commun; 2017 Nov; 8(1):1795. PubMed ID: 29176642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct interactions of GTP, UTP, and CTP with G(s) proteins.
    Gille A; Liu HY; Sprang SR; Seifert R
    J Biol Chem; 2002 Sep; 277(37):34434-42. PubMed ID: 12080068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q).
    Crouthamel M; Thiyagarajan MM; Evanko DS; Wedegaertner PB
    Cell Signal; 2008 Oct; 20(10):1900-10. PubMed ID: 18647648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling active GPCR conformations.
    Taddese B; Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Methods Enzymol; 2013; 522():21-35. PubMed ID: 23374178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular analysis of beta(2)-adrenoceptor coupling to G(s)-, G(i)-, and G(q)-proteins.
    Wenzel-Seifert K; Seifert R
    Mol Pharmacol; 2000 Nov; 58(5):954-66. PubMed ID: 11040042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Activation Process of the β2AR-G
    Bai C; Wang J; Mondal D; Du Y; Ye RD; Warshel A
    J Am Chem Soc; 2021 Jul; 143(29):11044-11051. PubMed ID: 34255502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair.
    Neuwald AF
    Protein Sci; 2007 Nov; 16(11):2570-7. PubMed ID: 17962409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of group-conserved residues in the helical core of beta2-adrenergic receptor.
    Chelikani P; Hornak V; Eilers M; Reeves PJ; Smith SO; RajBhandary UL; Khorana HG
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7027-32. PubMed ID: 17438264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the alpha subunit of GS protein.
    Kang H; Lee WK; Choi YH; Vukoti KM; Bang WG; Yu YG
    Biochem Biophys Res Commun; 2005 Apr; 329(2):684-92. PubMed ID: 15737640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular modeling studies give hint for the existence of a symmetric hβ₂R-Gαβγ-homodimer.
    Straßer A; Wittmann HJ
    J Mol Model; 2013 Oct; 19(10):4443-57. PubMed ID: 23925512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparent up-regulation of stimulatory G-protein alpha subunits in the pregnant human myometrium is mimicked by elevated smoothelin expression.
    Gsell S; Eschenhagen T; Kaspareit G; Nose M; Scholz H; Behrens O; Wieland T
    FASEB J; 2000 Jan; 14(1):17-26. PubMed ID: 10627276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The beta2-adrenergic receptor specifically sequesters Gs but signals through both Gs and Gi/o in rat sympathetic neurons.
    Vásquez C; Lewis DL
    Neuroscience; 2003; 118(3):603-10. PubMed ID: 12710970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation of the highly conserved Arg165 and Glu168 residues of human Gsalpha disrupts the alphaD-alphaE loop and enhances basal GDP/GTP exchange rate.
    Hinrichs MV; Montecino M; Bunster M; Olate J
    J Cell Biochem; 2004 Oct; 93(2):409-17. PubMed ID: 15368366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.