These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 20119962)
21. Single-step kinetics of HIV-1 reverse transcriptase mutants responsible for virus resistance to nucleoside inhibitors zidovudine and 3-TC. Krebs R; Immendörfer U; Thrall SH; Wöhrl BM; Goody RS Biochemistry; 1997 Aug; 36(33):10292-300. PubMed ID: 9254628 [TBL] [Abstract][Full Text] [Related]
22. Inactivation of human immunodeficiency virus type 1 reverse transcriptase by oltipraz: evidence for the formation of a stable adduct. Chavan SJ; Bornmann WG; Flexner C; Prochaska HJ Arch Biochem Biophys; 1995 Dec; 324(1):143-52. PubMed ID: 7503549 [TBL] [Abstract][Full Text] [Related]
23. Chiral discrimination of enantiomeric 2'-deoxythymidine 5'-triphosphate by HIV-1 reverse transcriptase and eukaryotic DNA polymerases. Yamaguchi T; Iwanami N; Shudo K; Saneyoshi M Biochem Biophys Res Commun; 1994 Apr; 200(2):1023-7. PubMed ID: 7513992 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic studies examining the efficiency and fidelity of DNA synthesis by the 3TC-resistant mutant (184V) of HIV-1 reverse transcriptase. Feng JY; Anderson KS Biochemistry; 1999 Jul; 38(29):9440-8. PubMed ID: 10413520 [TBL] [Abstract][Full Text] [Related]
25. Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators. Brandis JW; Edwards SG; Johnson KA Biochemistry; 1996 Feb; 35(7):2189-200. PubMed ID: 8652560 [TBL] [Abstract][Full Text] [Related]
26. Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. Back NK; Nijhuis M; Keulen W; Boucher CA; Oude Essink BO; van Kuilenburg AB; van Gennip AH; Berkhout B EMBO J; 1996 Aug; 15(15):4040-9. PubMed ID: 8670908 [TBL] [Abstract][Full Text] [Related]
27. The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance. Entin-Meer M; Sevilya Z; Hizi A Biochem J; 2002 Oct; 367(Pt 2):381-91. PubMed ID: 12097136 [TBL] [Abstract][Full Text] [Related]
28. Mechanistic insights into the role of Val75 of HIV-1 reverse transcriptase in misinsertion and mispair extension fidelity of DNA synthesis. Matamoros T; Kim B; Menéndez-Arias L J Mol Biol; 2008 Feb; 375(5):1234-48. PubMed ID: 18155043 [TBL] [Abstract][Full Text] [Related]
29. Attenuation of DNA replication by HIV-1 reverse transcriptase near the central termination sequence. Ignatov ME; Berdis AJ; Le Grice SF; Barkley MD Biochemistry; 2005 Apr; 44(14):5346-56. PubMed ID: 15807528 [TBL] [Abstract][Full Text] [Related]
30. Probing the mechanistic consequences of 5-fluorine substitution on cytidine nucleotide analogue incorporation by HIV-1 reverse transcriptase. Ray AS; Schinazi RF; Murakami E; Basavapathruni A; Shi J; Zorca SM; Chu CK; Anderson KS Antivir Chem Chemother; 2003 May; 14(3):115-25. PubMed ID: 14521328 [TBL] [Abstract][Full Text] [Related]
32. Recognition of threosyl nucleotides by DNA and RNA polymerases. Kempeneers V; Vastmans K; Rozenski J; Herdewijn P Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309 [TBL] [Abstract][Full Text] [Related]
33. Guanine α-carboxy nucleoside phosphonate (G-α-CNP) shows a different inhibitory kinetic profile against the DNA polymerases of human immunodeficiency virus (HIV) and herpes viruses. Balzarini J; Menni M; Das K; van Berckelaer L; Ford A; Maguire NM; Liekens S; Boehmer PE; Arnold E; Götte M; Maguire AR Biochem Pharmacol; 2017 Jul; 136():51-61. PubMed ID: 28390939 [TBL] [Abstract][Full Text] [Related]
34. Presteady state kinetic investigation of the incorporation of anti-hepatitis B nucleotide analogues catalyzed by noncanonical human DNA polymerases. Brown JA; Pack LR; Fowler JD; Suo Z Chem Res Toxicol; 2012 Jan; 25(1):225-33. PubMed ID: 22132702 [TBL] [Abstract][Full Text] [Related]
35. Iminodipropionic acid as the leaving group for DNA polymerization by HIV-1 reverse transcriptase. Song XP; Bouillon C; Lescrinier E; Herdewijn P Chembiochem; 2011 Aug; 12(12):1868-80. PubMed ID: 21714056 [TBL] [Abstract][Full Text] [Related]
36. Dipeptides as leaving group in the enzyme-catalyzed DNA synthesis. Song XP; Bouillon C; Lescrinier E; Herdewijn P Chem Biodivers; 2012 Dec; 9(12):2685-700. PubMed ID: 23255441 [TBL] [Abstract][Full Text] [Related]
37. Structural Basis for the KlenTaq DNA Polymerase Catalysed Incorporation of Alkene- versus Alkyne-Modified Nucleotides. Hottin A; Betz K; Diederichs K; Marx A Chemistry; 2017 Feb; 23(9):2109-2118. PubMed ID: 27901305 [TBL] [Abstract][Full Text] [Related]
38. Exploring the effects of active site constraints on HIV-1 reverse transcriptase DNA polymerase fidelity. Cramer J; Strerath M; Marx A; Restle T J Biol Chem; 2002 Nov; 277(46):43593-8. PubMed ID: 12200452 [TBL] [Abstract][Full Text] [Related]
39. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence. Montgomery JL; Rejali N; Wittwer CT Anal Biochem; 2013 Oct; 441(2):133-9. PubMed ID: 23872003 [TBL] [Abstract][Full Text] [Related]
40. Design, synthesis, and polymerase-catalyzed incorporation of click-modified boronic acid-TTP analogues. Cheng Y; Dai C; Peng H; Zheng S; Jin S; Wang B Chem Asian J; 2011 Oct; 6(10):2747-52. PubMed ID: 21887745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]