BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 2012004)

  • 1. Brain growth and differentiation in two fetal bats: qualitative and quantitative aspects.
    Pirlot P; Bernier R
    Am J Anat; 1991 Feb; 190(2):167-81. PubMed ID: 2012004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal nerve in the mouse-eared bat (Myotis myotis): ontogenetic aspects.
    Jastrow H; Oelschläger HH
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Nov; 288(11):1201-15. PubMed ID: 17031808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of undernutrition and subsequent rehabilitation on the growth and chemical composition of the cerebellum, brainstem and fore-brain of the rat.
    Dickerson JW; Jarvis J
    Proc Nutr Soc; 1970 May; 29(1):Suppl:4A-5A. PubMed ID: 5476578
    [No Abstract]   [Full Text] [Related]  

  • 4. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].
    Richter W; Kranz D
    Z Mikrosk Anat Forsch; 1981; 95(6):883-904. PubMed ID: 7336815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholamine innervation of the forebrain in the bull frog, Rana catesbiana.
    Tohyama M; Yamamoto K; Satoh K; Sakumoto T; Shimizu N
    J Hirnforsch; 1977; 18(3):223-8. PubMed ID: 303652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of neuropeptide Y-immunoreactive neurons in the cat olfactory bulb and olfactory peduncle: postnatal development and species comparison.
    Sanides-Kohlrausch C; Wahle P
    J Comp Neurol; 1990 Jan; 291(3):468-89. PubMed ID: 2298945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative morphology of the accessory olfactory bulb in bats.
    Frahm HD; Bhatnagar KP
    J Anat; 1980 Mar; 130(Pt 2):349-65. PubMed ID: 7400042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain.
    White LD; Barone S
    Cell Death Differ; 2001 Apr; 8(4):345-56. PubMed ID: 11550086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of tyrosine hydroxylase-immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis.
    Pierre-Simons J; Repérant J; Mahouche M; Ward R
    J Comp Neurol; 2002 May; 447(2):163-76. PubMed ID: 11977119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of angiotensin II type 2 receptor mRNA expression in fetal and neonatal rat brain.
    Nuyt AM; Lenkei Z; Palkovits M; Corvol P; Llorens-Cortés C
    J Comp Neurol; 1999 May; 407(2):193-206. PubMed ID: 10213091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vomeronasal organ in bats and primates: extremes of structural variability and its phylogenetic implications.
    Bhatnagar KP; Meisami E
    Microsc Res Tech; 1998 Dec; 43(6):465-75. PubMed ID: 9880162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Age-dependent activity of the cerebral matrix zones in Xiphophorus helleri (Teleostei). Radioautographic studies].
    Richter W; Kranz D
    J Hirnforsch; 1971; 13(1):109-16. PubMed ID: 5152860
    [No Abstract]   [Full Text] [Related]  

  • 13. Immunoreactivity to glial fibrillary acid protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis).
    Wasowicz M; Pierre J; Repérant J; Ward R; Vesselkin NP; Versaux-Botteri C
    J Hirnforsch; 1994; 35(1):71-8. PubMed ID: 8021458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation into neonatal rat brain as a tool to study properties of stem cells.
    Zigova T; Newman MB
    Methods Mol Biol; 2002; 198():341-56. PubMed ID: 11951637
    [No Abstract]   [Full Text] [Related]  

  • 15. Allometric comparison of brain and main brain subdivisions in birds.
    Boire D; Baron G
    J Hirnforsch; 1994; 35(1):49-66. PubMed ID: 8021456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BMP mRNA and protein expression in the developing mouse olfactory system.
    Peretto P; Cummings D; Modena C; Behrens M; Venkatraman G; Fasolo A; Margolis FL
    J Comp Neurol; 2002 Sep; 451(3):267-78. PubMed ID: 12210138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Formation of structures of the cochlear complex, olfactory bulbs, and cerebellum during postnatal development of rats].
    Ivanova SN
    Arkh Anat Gistol Embriol; 1980 Jun; 78(6):25-32. PubMed ID: 7406698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External morphology of pouch young opossum brains: a profile of opossum neurogenesis.
    Ulinski PS
    J Comp Neurol; 1971 May; 142(1):33-58. PubMed ID: 5579597
    [No Abstract]   [Full Text] [Related]  

  • 19. Pregnancy in chiroptera.
    Rasweiler JJ
    J Exp Zool; 1993 Sep; 266(6):495-513. PubMed ID: 8371094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of telencephalon in Agapornis roseicollis Vieillot (Psittacidae) and its relationship to the evolution of the telencephalon in vertebrates].
    Kirsche W; Kirsche K
    J Hirnforsch; 1993; 34(4):467-91. PubMed ID: 8308262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.