BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 20120041)

  • 1. Bioconversion of heptanal to heptanol by Saccharomyces cerevisiae.
    Verma S; Ray AK; De BK
    Yeast; 2010 May; 27(5):269-75. PubMed ID: 20120041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-accelerated death of Saccharomyces cerevisiae CBS 8066 under maltose stress.
    Postma E; Verduyn C; Kuiper A; Scheffers WA; van Dijken JP
    Yeast; 1990; 6(2):149-58. PubMed ID: 2183522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Saccharomyces cerevisiae B5 efficiently and stereoselectively reduces 2'-chloroacetophenone to R-2'-chloro-1-phenylethanol in the presence of 5% ethanol].
    Ou ZM; Wu JP; Yang LR; Cen PL; Liu L; Qi N
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):206-11. PubMed ID: 15966323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of dehydrated baker's yeast during reduction reactions in a biphasic medium.
    Cappaert L; Larroche C
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):686-90. PubMed ID: 14666390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae.
    Pankiewicz U; Jamroz J
    J Microbiol Biotechnol; 2007 Jul; 17(7):1139-46. PubMed ID: 18051325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.
    Huynh-Ba T; Matthey-Doret W; Fay LB; Bel Rhlid R
    J Agric Food Chem; 2003 Jun; 51(12):3629-35. PubMed ID: 12769537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of 3-chloro-1,2-propanediol with Saccharomyces cerevisiae.
    Bel-Rhlid R; Talmon JP; Fay LB; Juillerat MA
    J Agric Food Chem; 2004 Oct; 52(20):6165-9. PubMed ID: 15453682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Asymmetric microbial reduction of organosilyl ketone with immobilized Saccharomyces cerevisiae cells].
    Lou W; Zong M; Fan X; Lu J; Du W
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):484-9. PubMed ID: 12557557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109.
    Xiao JH; Chen DX; Liu JW; Liu ZL; Wan WH; Fang N; Xiao Y; Qi Y; Liang ZQ
    J Appl Microbiol; 2004; 96(5):1105-16. PubMed ID: 15078528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells.
    Pan YC; Lee WC
    Biotechnol Bioeng; 2005 Mar; 89(7):797-804. PubMed ID: 15672377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese.
    Psomas EI; Fletouris DJ; Litopoulou-Tzanetaki E; Tzanetakis N
    J Dairy Sci; 2003 Nov; 86(11):3416-22. PubMed ID: 14672170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of comparative proteome analysis to reveal influence of cultivation conditions on asymmetric bioreduction of beta-keto ester by Saccharomyces cerevisiae.
    Lin J; Liu Q; Su E; Wei D; Yang S
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):831-9. PubMed ID: 18679677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH stress on lipid composition of Saccharomyces cerevisiae.
    Singh B; Oberoi GK; Sharma SC
    Indian J Exp Biol; 1990 May; 28(5):430-3. PubMed ID: 2205568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae.
    Stark D; Münch T; Sonnleitner B; Marison IW; von Stockar U
    Biotechnol Prog; 2002; 18(3):514-23. PubMed ID: 12052068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthetic medium for Saccharomyces cerevisiae.
    Vidotto V; Picerno G; Caramello S; Paniate G
    Microbiologica; 1988 Apr; 11(2):143-50. PubMed ID: 3043147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.
    Muramatsu M; Ohto C; Obata S; Sakuradani E; Shimizu S
    J Biosci Bioeng; 2009 Jul; 108(1):52-5. PubMed ID: 19577192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.