These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 20121048)
1. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating. Lee EJ; Kim JJ; Cho SO Langmuir; 2010 Mar; 26(5):3024-30. PubMed ID: 20121048 [TBL] [Abstract][Full Text] [Related]
2. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
3. Superhydrophobic composite films produced on various substrates. Manoudis PN; Karapanagiotis I; Tsakalof A; Zuburtikudis I; Panayiotou C Langmuir; 2008 Oct; 24(19):11225-32. PubMed ID: 18720965 [TBL] [Abstract][Full Text] [Related]
4. Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces. Lee EJ; Jung CH; Hwang IT; Choi JH; Cho SO; Nho YC ACS Appl Mater Interfaces; 2011 Aug; 3(8):2988-93. PubMed ID: 21776956 [TBL] [Abstract][Full Text] [Related]
5. Direct catalytic route to superhydrophobic polyethylene films. Han W; Wu D; Ming W; Niemantsverdriet HJ; Thüne PC Langmuir; 2006 Sep; 22(19):7956-9. PubMed ID: 16952226 [TBL] [Abstract][Full Text] [Related]
6. Organic-inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability. Xu QF; Wang JN; Sanderson KD ACS Nano; 2010 Apr; 4(4):2201-9. PubMed ID: 20302323 [TBL] [Abstract][Full Text] [Related]
7. Defect-free nanoporous thin films from ABC triblock copolymers. Bang J; Kim SH; Drockenmuller E; Misner MJ; Russell TP; Hawker CJ J Am Chem Soc; 2006 Jun; 128(23):7622-9. PubMed ID: 16756319 [TBL] [Abstract][Full Text] [Related]
8. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Cao L; Hu HH; Gao D Langmuir; 2007 Apr; 23(8):4310-4. PubMed ID: 17371061 [TBL] [Abstract][Full Text] [Related]
9. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Li Y; Huang XJ; Heo SH; Li CC; Choi YK; Cai WP; Cho SO Langmuir; 2007 Feb; 23(4):2169-74. PubMed ID: 17279709 [TBL] [Abstract][Full Text] [Related]
10. Porous polymer films templated by marangoni flow-induced water droplet arrays. Cai Y; Zhang Newby BM Langmuir; 2009 Jul; 25(13):7638-45. PubMed ID: 19456183 [TBL] [Abstract][Full Text] [Related]
11. Biocompatible interface films deposited within porous polymers by Atomic Layer Deposition (ALD). Liang X; Lynn AD; King DM; Bryant SJ; Weimer AW ACS Appl Mater Interfaces; 2009 Sep; 1(9):1988-95. PubMed ID: 20355824 [TBL] [Abstract][Full Text] [Related]
12. From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology. Hanemann T; Boehm J; Henzi P; Honnef K; Litfin K; Ritzhaupt-Kleissl E; Hausselt J IEE Proc Nanobiotechnol; 2004 Aug; 151(4):167-72. PubMed ID: 16475863 [TBL] [Abstract][Full Text] [Related]
13. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
14. Petal effect: a superhydrophobic state with high adhesive force. Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016 [TBL] [Abstract][Full Text] [Related]
15. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Park MS; Joo W; Kim JK Langmuir; 2006 May; 22(10):4594-8. PubMed ID: 16649769 [TBL] [Abstract][Full Text] [Related]
16. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
17. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
18. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag. Jung YC; Bhushan B ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581 [TBL] [Abstract][Full Text] [Related]
19. Stable biomimetic superhydrophobic surfaces fabricated by polymer replication method from hierarchically structured surfaces of Al templates. Lee Y; Ju KY; Lee JK Langmuir; 2010 Sep; 26(17):14103-10. PubMed ID: 20698521 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube reinforced porous gels of poly(methyl methacrylate) with nonsolvents as porogens. Vaysse M; Khan MK; Sundararajan P Langmuir; 2009 Jun; 25(12):7042-9. PubMed ID: 19438176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]