BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20121124)

  • 1. Electrochemical reactivity of aromatic molecules at nanometer-sized surface domains: from Pt(hkl) single crystal electrodes to preferentially oriented platinum nanoparticles.
    Rodríguez-López M; Solla-Gullón J; Herrero E; Tuñón P; Feliu JM; Aldaz A; Carrasquillo A
    J Am Chem Soc; 2010 Feb; 132(7):2233-42. PubMed ID: 20121124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain-selective reactivity of hydroquinone-derived adlayers at basal Pt(hkl) single-crystal electrodes.
    Rodríguez-López M; Rodes A; Herrero E; Tuñón P; Feliu JM; Aldaz A; Carrasquillo A
    Langmuir; 2009 Sep; 25(17):10337-44. PubMed ID: 19655708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model system for the study of 2D phase transitions and supramolecular interactions at electrified interfaces: hydrogen-assisted reductive desorption of catechol-derived adlayers from Pt(111) single-crystal electrodes.
    Rodriguez-Lopez M; Rodes A; Berna A; Climent V; Herrero E; Tuñon P; Feliu JM; Aldaz A; Carrasquillo A
    Langmuir; 2008 Apr; 24(7):3551-61. PubMed ID: 18302423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tellurium adatoms as an in-situ surface probe of (111) two-dimensional domains at platinum surfaces.
    Rodríguez P; Herrero E; Aldaz A; Feliu JM
    Langmuir; 2006 Dec; 22(25):10329-37. PubMed ID: 17129000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent and step-modulated supramolecular electrochemical properties of catechol-derived adlayers at Pt(hkl) surfaces.
    Rodríguez-López M; Herrero E; Climent V; Rodes A; Aldaz A; Feliu JM; Carrasquillo A
    Langmuir; 2013 Oct; 29(42):13102-10. PubMed ID: 24116987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of model Pt(111) single crystal electrodes under HMRDE configuration to study the redox mechanism for charge injection at aromatic/metal interfaces.
    Rodríguez-López M; Tuñón P; Feliu JM; Aldaz A; Carrasquillo A
    Langmuir; 2010 Feb; 26(3):2124-9. PubMed ID: 19780550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of (111) ordered domains on platinum electrodes by irreversible adsorption of bismuth.
    Rodríguez P; Solla-Gullón J; Vidal-Iglesias FJ; Herrero E; Aldaz A; Feliu JM
    Anal Chem; 2005 Aug; 77(16):5317-23. PubMed ID: 16097774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface characterization of platinum electrodes.
    Solla-Gullón J; Rodríguez P; Herrero E; Aldaz A; Feliu JM
    Phys Chem Chem Phys; 2008 Mar; 10(10):1359-73. PubMed ID: 18309392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques.
    Tel-Vered R; Bard AJ
    J Phys Chem B; 2006 Dec; 110(50):25279-87. PubMed ID: 17165973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removing polyvinylpyrrolidone from catalytic Pt nanoparticles without modification of superficial order.
    Monzó J; Koper MT; Rodriguez P
    Chemphyschem; 2012 Feb; 13(3):709-15. PubMed ID: 22287363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen reduction reaction at three-phase interfaces.
    Subbaraman R; Strmcnik D; Paulikas AP; Stamenkovic VR; Markovic NM
    Chemphyschem; 2010 Sep; 11(13):2825-33. PubMed ID: 20648513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of atomic hydrogen at a nanostructured electrode of polyacrylate-capped Pt nanoparticles in polyelectrolyte.
    Markarian MZ; El Harakeh M; Halaoui LI
    J Phys Chem B; 2005 Jun; 109(23):11616-21. PubMed ID: 16852426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and surface characterization of single crystal PtBi and PtPb (100) and (001) surfaces.
    Liu Y; Abe H; Edvenson HM; Ghosh T; Disalvo FJ; Abruña HD
    Phys Chem Chem Phys; 2010 Oct; 12(40):12978-86. PubMed ID: 20820559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adlayers of Sb irreversibly adsorbed on Pt(111): an electrochemical scanning tunneling microscopy study.
    Zhao J; Jung C; Rhee CK
    J Phys Chem B; 2006 Jun; 110(22):10814-21. PubMed ID: 16771331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces.
    Li JF; Yang ZL; Ren B; Liu GK; Fang PP; Jiang YX; Wu DY; Tian ZQ
    Langmuir; 2006 Dec; 22(25):10372-9. PubMed ID: 17129005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical infrared characterization of CO comains on ruthenium-decorated platinum nanoparticles.
    Park S; Wieckowski A; Weaver MJ
    J Am Chem Soc; 2003 Feb; 125(8):2282-90. PubMed ID: 12590558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes.
    Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ
    Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-adsorption of CO onto a Ag-modified Pt(111)--restructuring of a Ag UPD layer monitored by EC-STM.
    Domke KF; Xiao XY; Baltruschat H
    Phys Chem Chem Phys; 2008 Mar; 10(11):1555-61. PubMed ID: 18327311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of surface structure and carbon monoxide oxidation site of shape-controlled Pt nanoparticles.
    Nakamura M; Hanioka Y; Ouchida W; Yamada M; Hoshi N
    Chemphyschem; 2009 Oct; 10(15):2719-24. PubMed ID: 19728343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.