BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20121124)

  • 21. Fullerene adlayers on various single-crystal metal surfaces prepared by transfer from L films.
    Uemura S; Sakata M; Hirayama C; Kunitake M
    Langmuir; 2004 Oct; 20(21):9198-201. PubMed ID: 15461506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and electrochemical behavior of ordered rh adlayers on Pt(100) electrodes.
    Gutiérrez de Dios FJ; Gómez R; Feliu JM
    Langmuir; 2005 Aug; 21(16):7439-48. PubMed ID: 16042477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution.
    García G; Koper MT
    Phys Chem Chem Phys; 2008 Jul; 10(25):3802-11. PubMed ID: 18563241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A site-selective in situ study of CO adsorption and desorption on Pt(355).
    Tränkenschuh B; Fritsche N; Fuhrmann T; Papp C; Zhu JF; Denecke R; Steinrück HP
    J Chem Phys; 2006 Feb; 124(7):74712. PubMed ID: 16497075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol.
    Lee SW; Chen S; Sheng W; Yabuuchi N; Kim YT; Mitani T; Vescovo E; Shao-Horn Y
    J Am Chem Soc; 2009 Nov; 131(43):15669-77. PubMed ID: 19824642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au(core)-Pt(shell) nanoparticles supported on GC electrodes.
    Zhang B; Li JF; Zhong QL; Ren B; Tian ZQ; Zou SZ
    Langmuir; 2005 Aug; 21(16):7449-55. PubMed ID: 16042478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic studies of adsorbed CO electrochemical oxidation on Pt(335) at full and sub-saturation coverages.
    Inkaew P; Korzeniewski C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3655-61. PubMed ID: 18563226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified Pt(111) electrodes: the mechanism of nitric oxide electroreduction on Pt.
    Cuesta A; Escudero M
    Phys Chem Chem Phys; 2008 Jul; 10(25):3628-34. PubMed ID: 18563223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of CO adsorption on Pt(100), Pt(410), and Pt(110) surfaces using density functional theory.
    Yamagishi S; Fujimoto T; Inada Y; Orita H
    J Phys Chem B; 2005 May; 109(18):8899-908. PubMed ID: 16852058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy.
    Wakisaka M; Suzuki H; Mitsui S; Uchida H; Watanabe M
    Langmuir; 2009 Feb; 25(4):1897-900. PubMed ID: 19152331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electro-oxidation of carbon monoxide on well-ordered Pt(111)/Sn surface alloys.
    Hayden BE; Rendall ME; South O
    J Am Chem Soc; 2003 Jun; 125(25):7738-42. PubMed ID: 12812515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals.
    He Q; Yang X; Chen W; Mukerjee S; Koel B; Chen S
    Phys Chem Chem Phys; 2010 Oct; 12(39):12544-55. PubMed ID: 20725683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ammonia selective oxidation on Pt(100) sites in an alkaline medium.
    Vidal-Iglesias FJ; Solla-Gullón J; Montiel V; Feliu JM; Aldaz A
    J Phys Chem B; 2005 Jul; 109(26):12914-9. PubMed ID: 16852603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Break-up of stepped platinum catalyst surfaces by high CO coverage.
    Tao F; Dag S; Wang LW; Liu Z; Butcher DR; Bluhm H; Salmeron M; Somorjai GA
    Science; 2010 Feb; 327(5967):850-3. PubMed ID: 20150498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An electrochemical study of 4-aminothiophenol/pt nanoparticle multilayers on gold electrodes.
    Jiang C; Elliott JM; Cardin DJ; Tsang SC
    Langmuir; 2009 Jan; 25(1):534-41. PubMed ID: 19053627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific reactivity of step sites towards CO adsorption and oxidation on platinum single crystals vicinal to Pt(111).
    Chen QS; Berna A; Climent V; Sun SG; Feliu JM
    Phys Chem Chem Phys; 2010 Oct; 12(37):11407-16. PubMed ID: 20717584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical stability of nanometer-scale Pt particles in acidic environments.
    Tang L; Han B; Persson K; Friesen C; He T; Sieradzki K; Ceder G
    J Am Chem Soc; 2010 Jan; 132(2):596-600. PubMed ID: 20017546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrational coupling as a probe of adsorption at different structural sites on a stepped single-crystal electrode.
    Kim CS; Korzeniewski C
    Anal Chem; 1997 Jul; 69(13):2349-53. PubMed ID: 21639367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of nanoparticle Pt-Ru fuel cell catalysts by heat treatment: a 195Pt NMR and electrochemical study.
    Babu PK; Kim HS; Kuk ST; Chung JH; Oldfield E; Wieckowski A; Smotkin ES
    J Phys Chem B; 2005 Sep; 109(36):17192-6. PubMed ID: 16853193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.