BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 20121175)

  • 1. Nuclear quantum effects in water clusters: the role of the molecular flexibility.
    González BS; Noya EG; Vega C; Sesé LM
    J Phys Chem B; 2010 Feb; 114(7):2484-92. PubMed ID: 20121175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum simulation of a hydrated noradrenaline analog with the torsional path integral method.
    Miller TF; Clary DC
    J Phys Chem A; 2006 Jan; 110(2):731-40. PubMed ID: 16405347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S; Markland TE; Manolopoulos DE
    J Chem Phys; 2009 Jul; 131(2):024501. PubMed ID: 19603998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can gas hydrate structures be described using classical simulations?
    Conde MM; Vega C; McBride C; Noya EG; Ramírez R; Sesé LM
    J Chem Phys; 2010 Mar; 132(11):114503. PubMed ID: 20331301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate and simple quantum model for liquid water.
    Paesani F; Zhang W; Case DA; Cheatham TE; Voth GA
    J Chem Phys; 2006 Nov; 125(18):184507. PubMed ID: 17115765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, stability, and infrared spectroscopy of (H2O)nNH4(+) clusters: a theoretical study at zero and finite temperature.
    Douady J; Calvo F; Spiegelman F
    J Chem Phys; 2008 Oct; 129(15):154305. PubMed ID: 19045191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of rigid and flexible water models in collisions of monomers and small clusters.
    Napari I; Vehkamäki H
    J Chem Phys; 2006 Sep; 125(9):094313. PubMed ID: 16965086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat capacity of water: A signature of nuclear quantum effects.
    Vega C; Conde MM; McBride C; Abascal JL; Noya EG; Ramirez R; Sesé LM
    J Chem Phys; 2010 Jan; 132(4):046101. PubMed ID: 20113070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adiabatic intramolecular movements for water systems.
    Pedroza LS; Silva AN
    J Chem Phys; 2008 Mar; 128(10):104311. PubMed ID: 18345892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An application of flexible constraints in Monte Carlo simulations of the isobaric--isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model.
    Saint-Martin H; Hess B; Berendsen HJ
    J Chem Phys; 2004 Jun; 120(23):11133-43. PubMed ID: 15268143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum contributions in the ice phases: the path to a new empirical model for water-TIP4PQ/2005.
    McBride C; Vega C; Noya EG; Ramírez R; Sesé LM
    J Chem Phys; 2009 Jul; 131(2):024506. PubMed ID: 19604003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum effects on the maximum in density of water as described by the TIP4PQ/2005 model.
    Noya EG; Vega C; Sesé LM; Ramírez R
    J Chem Phys; 2009 Sep; 131(12):124518. PubMed ID: 19791905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-benzene interactions: an effective fragment potential and correlated quantum chemistry study.
    Slipchenko LV; Gordon MS
    J Phys Chem A; 2009 Mar; 113(10):2092-102. PubMed ID: 19072625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.
    Ruckenstein E; Shulgin IL; Tilson JL
    J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo studies of drug nucleation 1: formation of crystalline clusters of bicalutamide in water.
    Persson R; Nordholm S; Perlovich G; Lindfors L
    J Phys Chem B; 2011 Mar; 115(12):3062-72. PubMed ID: 21384837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models.
    Chen B; Siepmann JI; Klein ML
    J Phys Chem A; 2005 Feb; 109(6):1137-45. PubMed ID: 16833423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.