BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20121593)

  • 1. Cervical tissue engineering using silk scaffolds and human cervical cells.
    House M; Sanchez CC; Rice WL; Socrate S; Kaplan DL
    Tissue Eng Part A; 2010 Jun; 16(6):2101-12. PubMed ID: 20121593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayered silk scaffolds for meniscus tissue engineering.
    Mandal BB; Park SH; Gil ES; Kaplan DL
    Biomaterials; 2011 Jan; 32(2):639-51. PubMed ID: 20926132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex vivo pregnant-like tissue model to assess injectable hydrogel for preterm birth prevention.
    Raia NR; Bakaysa SL; Ghezzi CE; House MD; Kaplan DL
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):468-474. PubMed ID: 31070848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs.
    Tiğli RS; Cannizaro C; Gümüşderelioğlu M; Kaplan DL
    J Biomed Mater Res A; 2011 Jan; 96(1):21-8. PubMed ID: 20949478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering.
    Chameettachal S; Murab S; Vaid R; Midha S; Ghosh S
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1212-1229. PubMed ID: 25846347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells.
    Hofmann S; Knecht S; Langer R; Kaplan DL; Vunjak-Novakovic G; Merkle HP; Meinel L
    Tissue Eng; 2006 Oct; 12(10):2729-38. PubMed ID: 17518642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB
    Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration.
    Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A
    Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of progesterone on cervical tissue formation in a three-dimensional culture system with human cervical fibroblasts.
    House M; Tadesse-Telila S; Norwitz ER; Socrate S; Kaplan DL
    Biol Reprod; 2014 Jan; 90(1):18. PubMed ID: 24285720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds.
    Bhumiratana S; Grayson WL; Castaneda A; Rockwood DN; Gil ES; Kaplan DL; Vunjak-Novakovic G
    Biomaterials; 2011 Apr; 32(11):2812-20. PubMed ID: 21262535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and Biochemical Effects of Progesterone on Engineered Cervical Tissue.
    House M; Kelly J; Klebanov N; Yoshida K; Myers K; Kaplan DL
    Tissue Eng Part A; 2018 Dec; 24(23-24):1765-1774. PubMed ID: 29855229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk-based injectable biomaterial as an alternative to cervical cerclage: an in vitro study.
    Heard AJ; Socrate S; Burke KA; Norwitz ER; Kaplan DL; House MD
    Reprod Sci; 2013 Aug; 20(8):929-36. PubMed ID: 23271162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.
    Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G
    J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds.
    Meinel L; Hofmann S; Karageorgiou V; Zichner L; Langer R; Kaplan D; Vunjak-Novakovic G
    Biotechnol Bioeng; 2004 Nov; 88(3):379-91. PubMed ID: 15486944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration.
    Chen K; Sahoo S; He P; Ng KS; Toh SL; Goh JC
    Tissue Eng Part A; 2012 Jul; 18(13-14):1399-409. PubMed ID: 22429111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo degradation of three-dimensional silk fibroin scaffolds.
    Wang Y; Rudym DD; Walsh A; Abrahamsen L; Kim HJ; Kim HS; Kirker-Head C; Kaplan DL
    Biomaterials; 2008; 29(24-25):3415-28. PubMed ID: 18502501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration.
    See EY; Toh SL; Goh JC
    Spine (Phila Pa 1976); 2011 Oct; 36(21):1744-51. PubMed ID: 22046611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature electrospun silk scaffold for in vitro mucosal modeling.
    Bulysheva AA; Bowlin GL; Klingelhutz AJ; Yeudall WA
    J Biomed Mater Res A; 2012 Mar; 100(3):757-67. PubMed ID: 22238242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.