These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 20121703)
1. Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex. Sameshima T; Iizuka R; Ueno T; Funatsu T Biochem J; 2010 Mar; 427(2):247-54. PubMed ID: 20121703 [TBL] [Abstract][Full Text] [Related]
2. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. Sameshima T; Ueno T; Iizuka R; Ishii N; Terada N; Okabe K; Funatsu T J Biol Chem; 2008 Aug; 283(35):23765-73. PubMed ID: 18567585 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Behlke J; Ristau O; Schönfeld HJ Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876 [TBL] [Abstract][Full Text] [Related]
4. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. Taguchi H J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372 [TBL] [Abstract][Full Text] [Related]
5. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. Koike-Takeshita A; Yoshida M; Taguchi H J Biol Chem; 2008 Aug; 283(35):23774-81. PubMed ID: 18567584 [TBL] [Abstract][Full Text] [Related]
6. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin. Yoda H; Koike-Takeshita A Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948 [TBL] [Abstract][Full Text] [Related]
7. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Kad NM; Ranson NA; Cliff MJ; Clarke AR J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049 [TBL] [Abstract][Full Text] [Related]
8. Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides. Sameshima T; Iizuka R; Ueno T; Wada J; Aoki M; Shimamoto N; Ohdomari I; Tanii T; Funatsu T J Biol Chem; 2010 Jul; 285(30):23159-64. PubMed ID: 20511221 [TBL] [Abstract][Full Text] [Related]
9. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593 [TBL] [Abstract][Full Text] [Related]
10. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285 [TBL] [Abstract][Full Text] [Related]
11. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Motojima F; Chaudhry C; Fenton WA; Farr GW; Horwich AL Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15005-12. PubMed ID: 15479763 [TBL] [Abstract][Full Text] [Related]
12. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Hayer-Hartl MK; Martin J; Hartl FU Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601 [TBL] [Abstract][Full Text] [Related]
13. Cryo-EM structure of the native GroEL-GroES complex from thermus thermophilus encapsulating substrate inside the cavity. Kanno R; Koike-Takeshita A; Yokoyama K; Taguchi H; Mitsuoka K Structure; 2009 Feb; 17(2):287-93. PubMed ID: 19217399 [TBL] [Abstract][Full Text] [Related]
14. GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL-GroES complex. Inbar E; Horovitz A Biochemistry; 1997 Oct; 36(40):12276-81. PubMed ID: 9315866 [TBL] [Abstract][Full Text] [Related]
15. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding. Hayer-Hartl MK; Ewalt KL; Hartl FU Biol Chem; 1999 May; 380(5):531-40. PubMed ID: 10384959 [TBL] [Abstract][Full Text] [Related]
16. Dissociation kinetics of the GroEL-gp31 chaperonin complex studied with Förster resonance energy transfer. Calmat S; Hendriks J; van Heerikhuizen H; Schmidt CF; van der Vies SM; Peterman EJ Biochemistry; 2009 Dec; 48(49):11692-8. PubMed ID: 19899806 [TBL] [Abstract][Full Text] [Related]
17. Reversible oligomerization and denaturation of the chaperonin GroES. Seale JW; Gorovits BM; Ybarra J; Horowitz PM Biochemistry; 1996 Apr; 35(13):4079-83. PubMed ID: 8672442 [TBL] [Abstract][Full Text] [Related]
18. GroEL and the GroEL-GroES Complex. Ishii N Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of mutations in GroES that allow GroEL to function as a single ring. Liu H; Kovács E; Lund PA FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569 [TBL] [Abstract][Full Text] [Related]
20. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Illingworth M; Salisbury J; Li W; Lin D; Chen L Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]