These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20122062)

  • 1. Virtual reality feedback for gait improvement in patients with idiopathic senile gait disorders and patients with history of stroke.
    Baram Y; Aharon-Peretz J; Lenger R
    J Am Geriatr Soc; 2010 Jan; 58(1):191-2. PubMed ID: 20122062
    [No Abstract]   [Full Text] [Related]  

  • 2. Gait velocity and community ambulation: the limits of assessment.
    Lord S; Rochester L
    Stroke; 2008 Apr; 39(4):e75; author reply e76. PubMed ID: 18309151
    [No Abstract]   [Full Text] [Related]  

  • 3. Therapeutic Effect of Virtual Reality on Post-Stroke Patients: Randomized Clinical Trial.
    Pedreira da Fonseca E; da Silva Ribeiro NM; Pinto EB
    J Stroke Cerebrovasc Dis; 2017 Jan; 26(1):94-100. PubMed ID: 27693404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does gait analysis change clinical decision-making in poststroke patients? Results from a pragmatic prospective observational study.
    Ferrarin M; Rabuffetti M; Bacchini M; Casiraghi A; Castagna A; Pizzi A; Montesano A
    Eur J Phys Rehabil Med; 2015 Apr; 51(2):171-84. PubMed ID: 25184798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study.
    Kim JH; Jang SH; Kim CS; Jung JH; You JH
    Am J Phys Med Rehabil; 2009 Sep; 88(9):693-701. PubMed ID: 19692788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.
    Thaut MH; Leins AK; Rice RR; Argstatter H; Kenyon GP; McIntosh GC; Bolay HV; Fetter M
    Neurorehabil Neural Repair; 2007; 21(5):455-9. PubMed ID: 17426347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke.
    Deutsch JE; Merians AS; Adamovich S; Poizner H; Burdea GC
    Restor Neurol Neurosci; 2004; 22(3-5):371-86. PubMed ID: 15502277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of a home-based rehabilitation programme on lower limb functions after stroke.
    Hui-Chan CW; Ng SS; Mak MK
    Hong Kong Med J; 2009 Jun; 15(3 Suppl 4):42-6. PubMed ID: 19509438
    [No Abstract]   [Full Text] [Related]  

  • 9. A real-time auditory feedback system for retraining gait.
    Maulucci RA; Eckhouse RH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5199-202. PubMed ID: 22255509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait assessment during the initial fitting of an ankle foot orthosis in individuals with stroke.
    Rao N; Chaudhuri G; Hasso D; D'Souza K; Wening J; Carlson C; Aruin AS
    Disabil Rehabil Assist Technol; 2008 Jul; 3(4):201-7. PubMed ID: 18608442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. After the stroke.
    Jarmer L; Fielding R
    Rehab Manag; 2010 Jun; 23(5):18, 20-1. PubMed ID: 20527628
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of virtual reality training on gait biomechanics of individuals post-stroke.
    Mirelman A; Patritti BL; Bonato P; Deutsch JE
    Gait Posture; 2010 Apr; 31(4):433-7. PubMed ID: 20189810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up.
    Ng MF; Tong RK; Li LS
    Stroke; 2008 Jan; 39(1):154-60. PubMed ID: 18006861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of the user interface for "Stappy", a sensor-feedback system to facilitate walking in people after stroke: a user-centred approach.
    Jie LJ; Jamin G; Smit K; Beurskens A; Braun S
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):959-967. PubMed ID: 31248294
    [No Abstract]   [Full Text] [Related]  

  • 16. Longitudinal optical imaging study for locomotor recovery after stroke.
    Miyai I; Yagura H; Hatakenaka M; Oda I; Konishi I; Kubota K
    Stroke; 2003 Dec; 34(12):2866-70. PubMed ID: 14615624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke.
    Tang A; Sibley KM; Thomas SG; Bayley MT; Richardson D; McIlroy WE; Brooks D
    Neurorehabil Neural Repair; 2009 May; 23(4):398-406. PubMed ID: 19088223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled partial body-weight support for treadmill training-a case study.
    Bennett BC; Riley PO; Franz JR; Dicharry J; Allaire PE; Miller S; Kerrigan DC
    PM R; 2009 May; 1(5):496-9. PubMed ID: 19627937
    [No Abstract]   [Full Text] [Related]  

  • 19. Virtual reality-based approaches to enable walking for people poststroke.
    Deutsch JE; Mirelman A
    Top Stroke Rehabil; 2007; 14(6):45-53. PubMed ID: 18174115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke.
    Mirelman A; Bonato P; Deutsch JE
    Stroke; 2009 Jan; 40(1):169-74. PubMed ID: 18988916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.