These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20122186)

  • 21. A rapid bootstrap algorithm for the RAxML Web servers.
    Stamatakis A; Hoover P; Rougemont J
    Syst Biol; 2008 Oct; 57(5):758-71. PubMed ID: 18853362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computing Manhattan Path-Difference Median Trees: A Practical Local Search Approach.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1063-1076. PubMed ID: 28650824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous Compression of Large Collections of Evolutionary Trees.
    Matthews SJ
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):807-14. PubMed ID: 26357320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Local Search for Euclidean Path-Difference Median Trees.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1374-1385. PubMed ID: 29035224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SuperMIC: Analyzing Large Biological Datasets in Bioinformatics with Maximal Information Coefficient.
    Wang C; Dai D; Li X; Wang A; Zhou X
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):783-795. PubMed ID: 27076457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of additive trees using circular orders.
    Makarenkov V; Leclerc B
    J Comput Biol; 2000; 7(5):731-44. PubMed ID: 11153096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstructing (super)trees from data sets with missing distances: not all is lost.
    Kettleborough G; Dicks J; Roberts IN; Huber KT
    Mol Biol Evol; 2015 Jun; 32(6):1628-42. PubMed ID: 25657329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An exact algorithm for the geodesic distance between phylogenetic trees.
    Kupczok A; von Haeseler A; Klaere S
    J Comput Biol; 2008; 15(6):577-91. PubMed ID: 18631022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computing the distribution of the Robinson-Foulds distance.
    Hayati M; Chindelevitch L
    Comput Biol Chem; 2020 May; 87():107284. PubMed ID: 32599459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualizing conflicting evolutionary hypotheses in large collections of trees: using consensus networks to study the origins of placentals and hexapods.
    Holland B; Delsuc F; Moulton V
    Syst Biol; 2005 Feb; 54(1):66-76. PubMed ID: 15805011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MapReduce-Based Parallel Genetic Algorithm for CpG-Site Selection in Age Prediction.
    Momeni Z; Saniee Abadeh M
    Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31775313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust Analysis of Phylogenetic Tree Space.
    Smith MR
    Syst Biol; 2022 Aug; 71(5):1255-1270. PubMed ID: 34963003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MASTtreedist: visualization of tree space based on maximum agreement subtree.
    Huang H; Li Y
    J Comput Biol; 2013 Jan; 20(1):42-9. PubMed ID: 23294272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient and extensible approach for compressing phylogenetic trees.
    Matthews SJ; Williams TL
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S16. PubMed ID: 22165819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exact solutions for species tree inference from discordant gene trees.
    Chang WC; Górecki P; Eulenstein O
    J Bioinform Comput Biol; 2013 Oct; 11(5):1342005. PubMed ID: 24131054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice.
    Aberer AJ; Krompass D; Stamatakis A
    Syst Biol; 2013 Jan; 62(1):162-6. PubMed ID: 22962004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms.
    Ferraro Petrillo U; Roscigno G; Cattaneo G; Giancarlo R
    Bioinformatics; 2018 Jun; 34(11):1826-1833. PubMed ID: 29342232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the Performance of Probabilistic Algorithms for Phylogenetic Analysis of Big Morphological Datasets: A Simulation Study.
    Vernygora OV; Simões TR; Campbell EO
    Syst Biol; 2020 Nov; 69(6):1088-1105. PubMed ID: 32191335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The challenge of constructing large phylogenetic trees.
    Sanderson MJ; Driskell AC
    Trends Plant Sci; 2003 Aug; 8(8):374-9. PubMed ID: 12927970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.
    Huson DH; Linz S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):398-410. PubMed ID: 26955052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.