These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20122229)

  • 1. Estimating true evolutionary distances under rearrangements, duplications, and losses.
    Lin Y; Rajan V; Swenson KM; Moret BM
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S54. PubMed ID: 20122229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes.
    Lin Y; Moret BM
    J Comput Biol; 2011 Sep; 18(9):1055-64. PubMed ID: 21899415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the true evolutionary distance under the fragile breakage model.
    Alexeev N; Alekseyev MA
    BMC Genomics; 2017 May; 18(Suppl 4):356. PubMed ID: 28589865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TruEst: a better estimator of evolutionary distance under the INFER model.
    Zabelkin A; Avdeyev P; Alexeev N
    J Math Biol; 2023 Jul; 87(2):25. PubMed ID: 37423919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome rearrangements with duplications.
    Bader M
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S27. PubMed ID: 20122199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distance-based genome rearrangement phylogeny.
    Wang LS; Warnow T; Moret BM; Jansen RK; Raubeson LA
    J Mol Evol; 2006 Oct; 63(4):473-83. PubMed ID: 17021931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating true evolutionary distances under the DCJ model.
    Lin Y; Moret BM
    Bioinformatics; 2008 Jul; 24(13):i114-22. PubMed ID: 18586703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Murine segmental duplications are hot spots for chromosome and gene evolution.
    Armengol L; Marquès-Bonet T; Cheung J; Khaja R; González JR; Scherer SW; Navarro A; Estivill X
    Genomics; 2005 Dec; 86(6):692-700. PubMed ID: 16256303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On pairwise distances and median score of three genomes under DCJ.
    Aganezov S; Alekseyev MA
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S1. PubMed ID: 23282410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorting Linear Genomes with Rearrangements and Indels.
    Braga MD; Stoye J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):500-6. PubMed ID: 26357261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Rearrangements on Multigenomic Models: Applications of Graph Convexity Problems.
    Cunha LFI; Protti F
    J Comput Biol; 2019 Nov; 26(11):1214-1222. PubMed ID: 31120333
    [No Abstract]   [Full Text] [Related]  

  • 13. Genome halving and double distance with losses.
    Savard OT; Gagnon Y; Bertrand D; El-Mabrouk N
    J Comput Biol; 2011 Sep; 18(9):1185-99. PubMed ID: 21899424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Duplications Are At Least 50 Times Less Frequent than Gene Transfers in Prokaryotic Genomes.
    Tria FDK; Martin WF
    Genome Biol Evol; 2021 Oct; 13(10):. PubMed ID: 34599337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes.
    Bhatia S; Egri-Nagy A; Francis AR
    J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator.
    Lin Y; Rajan V; Moret BM
    J Comput Biol; 2011 Sep; 18(9):1131-9. PubMed ID: 21899420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum likelihood estimates of pairwise rearrangement distances.
    Serdoz S; Egri-Nagy A; Sumner J; Holland BR; Jarvis PD; Tanaka MM; Francis AR
    J Theor Biol; 2017 Jun; 423():31-40. PubMed ID: 28435014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalizations of the genomic rank distance to indels.
    Pereira Zanetti JP; Peres Oliveira L; Chindelevitch L; Meidanis J
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36790056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorting Signed Permutations by Inverse Tandem Duplication Random Losses.
    Hartmann T; Bannach M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2177-2188. PubMed ID: 31095495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation.
    Brandis G; Hughes D
    PLoS Genet; 2020 Mar; 16(3):e1008615. PubMed ID: 32130223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.