BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20122242)

  • 61. Discovering multiple realistic TFBS motifs based on a generalized model.
    Chan TM; Li G; Leung KS; Lee KH
    BMC Bioinformatics; 2009 Oct; 10():321. PubMed ID: 19811641
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficiently Mining Recurrent Substructures from Protein Three-Dimensional Structure Graphs.
    Saidi R; Dhifli W; Maddouri M; Mephu Nguifo E
    J Comput Biol; 2019 Jun; 26(6):561-571. PubMed ID: 30517022
    [No Abstract]   [Full Text] [Related]  

  • 63. Greedy mixture learning for multiple motif discovery in biological sequences.
    Blekas K; Fotiadis DI; Likas A
    Bioinformatics; 2003 Mar; 19(5):607-17. PubMed ID: 12651719
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Relation between weight matrix and substitution matrix: motif search by similarity.
    Zheng WM
    Bioinformatics; 2005 Apr; 21(7):938-43. PubMed ID: 15514002
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Finding exact optimal motifs in matrix representation by partitioning.
    Leung HC; Chin FY
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii86-92. PubMed ID: 16204132
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Profile-based short linear protein motif discovery.
    Haslam NJ; Shields DC
    BMC Bioinformatics; 2012 May; 13():104. PubMed ID: 22607209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MOST+: A de novo motif finding approach combining genomic sequence and heterogeneous genome-wide signatures.
    Zhang Y; He Y; Zheng G; Wei C
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S13. PubMed ID: 26099518
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences.
    Siebert M; Söding J
    Nucleic Acids Res; 2016 Jul; 44(13):6055-69. PubMed ID: 27288444
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery.
    Kellis M; Patterson N; Birren B; Berger B; Lander ES
    J Comput Biol; 2004; 11(2-3):319-55. PubMed ID: 15285895
    [TBL] [Abstract][Full Text] [Related]  

  • 71. SOMEA: self-organizing map based extraction algorithm for DNA motif identification with heterogeneous model.
    Lee NK; Wang D
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S16. PubMed ID: 21342545
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dispom: a discriminative de-novo motif discovery tool based on the jstacs library.
    Grau J; Keilwagen J; Gohr A; Paponov IA; Posch S; Seifert M; Strickert M; Grosse I
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340006. PubMed ID: 23427988
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Towards a theoretical understanding of false positives in DNA motif finding.
    Zia A; Moses AM
    BMC Bioinformatics; 2012 Jun; 13():151. PubMed ID: 22738169
    [TBL] [Abstract][Full Text] [Related]  

  • 74. DILIMOT: discovery of linear motifs in proteins.
    Neduva V; Russell RB
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W350-5. PubMed ID: 16845024
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Logos: a modular bayesian model for de novo motif detection.
    Xing EP; Wu W; Jordan MI; Karp RM
    J Bioinform Comput Biol; 2004 Mar; 2(1):127-54. PubMed ID: 15272436
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PRESnovo: Prescreening Prior to
    DeLaney K; Cao W; Ma Y; Ma M; Zhang Y; Li L
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1358-1371. PubMed ID: 32266812
    [TBL] [Abstract][Full Text] [Related]  

  • 77. FIMO: scanning for occurrences of a given motif.
    Grant CE; Bailey TL; Noble WS
    Bioinformatics; 2011 Apr; 27(7):1017-8. PubMed ID: 21330290
    [TBL] [Abstract][Full Text] [Related]  

  • 78. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
    Dang LT; Tondl M; Chiu MHH; Revote J; Paten B; Tano V; Tokolyi A; Besse F; Quaife-Ryan G; Cumming H; Drvodelic MJ; Eichenlaub MP; Hallab JC; Stolper JS; Rossello FJ; Bogoyevitch MA; Jans DA; Nim HT; Porrello ER; Hudson JE; Ramialison M
    BMC Genomics; 2018 Apr; 19(1):238. PubMed ID: 29621972
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.
    Setty M; Leslie CS
    PLoS Comput Biol; 2015 May; 11(5):e1004271. PubMed ID: 26016777
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Searching for protein signatures using a multilevel alphabet.
    Hod R; Kohen R; Mandel-Gutfreund Y
    Proteins; 2013 Jun; 81(6):1058-68. PubMed ID: 23386227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.