These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 20122704)
1. Metabolic responses of Thellungiella halophila/salsuginea to biotic and abiotic stresses: metabolite profiles and quantitative analyses. Pedras MS; Zheng QA Phytochemistry; 2010 Apr; 71(5-6):581-9. PubMed ID: 20122704 [TBL] [Abstract][Full Text] [Related]
2. Unveiling the phytoalexin biosynthetic puzzle in salt cress: unprecedented incorporation of glucobrassicin into wasalexins A and B. Pedras MS; Yaya EE; Hossain S Org Biomol Chem; 2010 Nov; 8(22):5150-8. PubMed ID: 20848032 [TBL] [Abstract][Full Text] [Related]
3. Photochemical dimerization of wasalexins in UV-irradiated Thellungiellahalophila and in vitro generates unique cruciferous phytoalexins. Pedras MS; Zheng QA; Schatte G; Adio AM Phytochemistry; 2009 Dec; 70(17-18):2010-6. PubMed ID: 19818973 [TBL] [Abstract][Full Text] [Related]
4. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. Pedras MS; Adio AM Phytochemistry; 2008 Feb; 69(4):889-93. PubMed ID: 18078965 [TBL] [Abstract][Full Text] [Related]
5. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of the crucifer phytoalexins wasalexin A and B in the plant pathogenic fungus Leptosphaeria maculans. Pedras MS; Suchý M Org Biomol Chem; 2006 Sep; 4(18):3526-35. PubMed ID: 17036150 [TBL] [Abstract][Full Text] [Related]
7. Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. Mucha S; Walther D; Müller TM; Hincha DK; Glawischnig E BMC Plant Biol; 2015 Jun; 15():137. PubMed ID: 26063239 [TBL] [Abstract][Full Text] [Related]
8. Defense and signalling metabolites of the crucifer Erucastrum canariense: Synchronized abiotic induction of phytoalexins and galacto-oxylipins. Pedras MSC; To QH Phytochemistry; 2017 Jul; 139():18-24. PubMed ID: 28390240 [TBL] [Abstract][Full Text] [Related]
9. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Pedras MS; Zheng QA; Gadagi RS; Rimmer SR Phytochemistry; 2008 Feb; 69(4):894-910. PubMed ID: 18039546 [TBL] [Abstract][Full Text] [Related]
10. Expanding the nasturlexin family: Nasturlexins C and D and their sulfoxides are phytoalexins of the crucifers Barbarea vulgaris and B. verna. Pedras MS; Alavi M; To QH Phytochemistry; 2015 Oct; 118():131-8. PubMed ID: 26318326 [TBL] [Abstract][Full Text] [Related]
11. The chemical ecology of crucifers and their fungal pathogens: boosting plant defenses and inhibiting pathogen invasion. Pedras MS Chem Rec; 2008; 8(2):109-15. PubMed ID: 18383155 [TBL] [Abstract][Full Text] [Related]
12. Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites. Pedras MS; Montaut S Bioorg Med Chem; 2003 Jul; 11(14):3115-20. PubMed ID: 12818674 [TBL] [Abstract][Full Text] [Related]
13. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. Cárdenas PD; Landtved JP; Larsen SH; Lindegaard N; Wøhlk S; Jensen KR; Pattison DI; Burow M; Bak S; Crocoll C; Agerbirk N Phytochemistry; 2023 Sep; 213():113742. PubMed ID: 37269935 [TBL] [Abstract][Full Text] [Related]
14. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Pedras MS; Chumala PB; Suchy M Phytochemistry; 2003 Nov; 64(5):949-56. PubMed ID: 14561510 [TBL] [Abstract][Full Text] [Related]
15. Molecular interactions of the phytotoxins destruxin B and sirodesmin PL with crucifers and cereals: metabolism and elicitation of plant defenses. Pedras MS; Khallaf I Phytochemistry; 2012 May; 77():129-39. PubMed ID: 22414311 [TBL] [Abstract][Full Text] [Related]
16. Global transcriptome analysis provides new insights in Thellungiella salsuginea stress response. Zhang Y; Shi SH; Li FL; Zhao CZ; Li AQ; Hou L; Xia H; Wang BS; Baltazar JL; Wang XJ; Zhao SZ Plant Biol (Stuttg); 2019 Sep; 21(5):796-804. PubMed ID: 31081576 [TBL] [Abstract][Full Text] [Related]
17. Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae. Schlaeppi K; Mauch F Plant Signal Behav; 2010 Sep; 5(9):1099-101. PubMed ID: 21490418 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity. Guevara DR; Champigny MJ; Tattersall A; Dedrick J; Wong CE; Li Y; Labbe A; Ping CL; Wang Y; Nuin P; Golding GB; McCarry BE; Summers PS; Moffatt BA; Weretilnyk EA BMC Plant Biol; 2012 Oct; 12():175. PubMed ID: 23025749 [TBL] [Abstract][Full Text] [Related]
19. Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds. Pedras MSC; To QH Org Biomol Chem; 2018 May; 16(19):3625-3638. PubMed ID: 29708249 [TBL] [Abstract][Full Text] [Related]
20. Toward the control of Leptosphaeria maculans: design, syntheses, biological activity, and metabolism of potential detoxification inhibitors of the crucifer phytoalexin brassinin. Pedras MS; Jha M Bioorg Med Chem; 2006 Jul; 14(14):4958-79. PubMed ID: 16616505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]