These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 20122712)
1. Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils. Rodrigues SM; Henriques B; Coimbra J; Ferreira da Silva E; Pereira ME; Duarte AC Chemosphere; 2010 Mar; 78(11):1301-12. PubMed ID: 20122712 [TBL] [Abstract][Full Text] [Related]
2. Metals in the surface sediments of selected water reservoirs, Slovakia. Hiller E; Jurkovic L; Sutriepka M Bull Environ Contam Toxicol; 2010 May; 84(5):635-40. PubMed ID: 20411242 [TBL] [Abstract][Full Text] [Related]
3. Distribution and mobility of arsenic in soils of a mining area (Western Spain). García-Sánchez A; Alonso-Rojo P; Santos-Francés F Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319 [TBL] [Abstract][Full Text] [Related]
4. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327 [TBL] [Abstract][Full Text] [Related]
5. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta. Su T; Shu S; Shi H; Wang J; Adams C; Witt EC Environ Pollut; 2008 Dec; 156(3):944-50. PubMed ID: 18757126 [TBL] [Abstract][Full Text] [Related]
6. Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Reis AT; Rodrigues SM; Araújo C; Coelho JP; Pereira E; Duarte AC Sci Total Environ; 2009 Apr; 407(8):2689-700. PubMed ID: 19211131 [TBL] [Abstract][Full Text] [Related]
7. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Xiao T; Guha J; Boyle D; Liu CQ; Chen J Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287 [TBL] [Abstract][Full Text] [Related]
8. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments. Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437 [TBL] [Abstract][Full Text] [Related]
9. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia. Sultan K Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097 [TBL] [Abstract][Full Text] [Related]
10. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. Neculita CM; Zagury GJ; Deschênes L J Environ Qual; 2005; 34(1):255-62. PubMed ID: 15647556 [TBL] [Abstract][Full Text] [Related]
11. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
12. Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis. Lafabrie C; Major KM; Major CS; Cebrián J Chemosphere; 2011 Mar; 82(10):1393-400. PubMed ID: 21168896 [TBL] [Abstract][Full Text] [Related]
13. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. Craw D J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268 [TBL] [Abstract][Full Text] [Related]
14. Arsenic in the soils of Zimapán, Mexico. Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728 [TBL] [Abstract][Full Text] [Related]
15. Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Taylor H; Appleton JD; Lister R; Smith B; Chitamweba D; Mkumbo O; Machiwa JF; Tesha AL; Beinhoff C Sci Total Environ; 2005 May; 343(1-3):111-33. PubMed ID: 15862840 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California. Meador JP; Ernest DW; Kagley AN Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769 [TBL] [Abstract][Full Text] [Related]
17. Pollution characteristics of the recent sediments in the Hangzhou section of the Grand Canal, China. Chen YX; Liu H; Zhu GW; Chen HL; Tian GM J Environ Sci (China); 2004; 16(1):34-9. PubMed ID: 14971448 [TBL] [Abstract][Full Text] [Related]
18. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Butler BA Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291 [TBL] [Abstract][Full Text] [Related]
19. [Biological monitoring of persons in areas with increased soil mercury, arsenic and antimony content]. Gebel T; Suchenwirth RH; Behmke C; Plessow A; Claussen K; Schulze E; Dunkelberg H Gesundheitswesen; 1998 Oct; 60(10):580-5. PubMed ID: 9844294 [TBL] [Abstract][Full Text] [Related]
20. Arsenic pollution in groundwater: a self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh. Tareq SM; Safiullah S; Anawar HM; Rahman MM; Ishizuka T Sci Total Environ; 2003 Sep; 313(1-3):213-26. PubMed ID: 12922072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]