BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20122720)

  • 1. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells.
    Liu Z; Janzen J; Brooks DE
    Biomaterials; 2010 Apr; 31(12):3364-73. PubMed ID: 20122720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s.
    J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN
    Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells.
    Chapanian R; Constantinescu I; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Apr; 33(10):3047-57. PubMed ID: 22261097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: ligand binding properties.
    Kainthan RK; Mugabe C; Burt HM; Brooks DE
    Biomacromolecules; 2008 Mar; 9(3):886-95. PubMed ID: 18247528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute.
    Kainthan RK; Janzen J; Kizhakkedathu JN; Devine DV; Brooks DE
    Biomaterials; 2008 Apr; 29(11):1693-704. PubMed ID: 18194812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols.
    Rossi NA; Constantinescu I; Kainthan RK; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2010 May; 31(14):4167-78. PubMed ID: 20172604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear poly(methyl glycerol) and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol).
    Weinhart M; Grunwald I; Wyszogrodzka M; Gaetjen L; Hartwig A; Haag R
    Chem Asian J; 2010 Sep; 5(9):1992-2000. PubMed ID: 20602410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution.
    Imran ul-haq M; Lai BF; Chapanian R; Kizhakkedathu JN
    Biomaterials; 2012 Dec; 33(35):9135-47. PubMed ID: 23020861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled crystallization of CaCO(3) on hyperbranched polyglycerol adsorbed to self-assembled monolayers.
    Balz M; Barriau E; Istratov V; Frey H; Tremel W
    Langmuir; 2005 Apr; 21(9):3987-91. PubMed ID: 15835965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery.
    Zhang X; Zhang X; Wu Z; Gao X; Cheng C; Wang Z; Li C
    Acta Biomater; 2011 Feb; 7(2):585-92. PubMed ID: 20813209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-biocompatibility relationship of dendritic polyglycerol derivatives.
    Khandare J; Mohr A; Calderón M; Welker P; Licha K; Haag R
    Biomaterials; 2010 May; 31(15):4268-77. PubMed ID: 20206990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and lubricating properties of poly(l-lysine)-graft-poly(ethylene glycol) on human-hair surfaces.
    Lee S; Zürcher S; Dorcier A; Luengo GS; Spencer ND
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1938-45. PubMed ID: 20355818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyglycerol coatings of glass vials for protein resistance.
    Höger K; Becherer T; Qiang W; Haag R; Friess W; Küchler S
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):756-64. PubMed ID: 23624376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion.
    Garratty G
    Vox Sang; 2008 Feb; 94(2):87-95. PubMed ID: 18034787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA.
    Kainthan RK; Gnanamani M; Ganguli M; Ghosh T; Brooks DE; Maiti S; Kizhakkedathu JN
    Biomaterials; 2006 Nov; 27(31):5377-90. PubMed ID: 16854460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel incorporated in hydrophobically derivatized hyperbranched polyglycerols for intravesical bladder cancer therapy.
    Mugabe C; Hadaschik BA; Kainthan RK; Brooks DE; So AI; Gleave ME; Burt HM
    BJU Int; 2009 Apr; 103(7):978-86. PubMed ID: 19007363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to optimize PEG-coating of red blood cells.
    Hashemi-Najafabadi S; Vasheghani-Farahani E; Shojaosadati SA; Rasaee MJ; Armstrong JK; Moin M; Pourpak Z
    Bioconjug Chem; 2006; 17(5):1288-93. PubMed ID: 16984140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased immunorejection in unmatched blood transfusions by attachment of methoxypolyethylene glycol on human red blood cells and the effect on D antigen.
    Tan Y; Qiu Y; Xu H; Ji S; Li S; Gong F; Zhang Y
    Transfusion; 2006 Dec; 46(12):2122-7. PubMed ID: 17176324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.