These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 20122721)
21. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
22. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Wang S; Zhang Y; Wang H; Dong Z Int J Biol Macromol; 2011 Mar; 48(2):345-53. PubMed ID: 21182858 [TBL] [Abstract][Full Text] [Related]
23. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility. Ke Y; Wang YJ; Ren L; Zhao QC; Huang W Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067 [TBL] [Abstract][Full Text] [Related]
24. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272 [TBL] [Abstract][Full Text] [Related]
26. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related]
27. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936 [TBL] [Abstract][Full Text] [Related]
28. [Preparation and cytocompatibility study of poly (epsilon-caprolactone)/silk sericin nanofibrous scaffolds]. Li H; Li L; Qian Y; Cai K; Lu Y; Zhong L; Liu W; Yang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):305-9. PubMed ID: 21604491 [TBL] [Abstract][Full Text] [Related]
29. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
30. Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. Wu C; Zhang Y; Ke X; Xie Y; Zhu H; Crawford R; Xiao Y J Biomed Mater Res A; 2010 Nov; 95(2):476-85. PubMed ID: 20648544 [TBL] [Abstract][Full Text] [Related]
31. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
32. Preparation and characterization of Antheraea assama silk fibroin based novel non-woven scaffold for tissue engineering applications. Kasoju N; Bhonde RR; Bora U J Tissue Eng Regen Med; 2009 Oct; 3(7):539-52. PubMed ID: 19670334 [TBL] [Abstract][Full Text] [Related]
33. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451 [TBL] [Abstract][Full Text] [Related]
34. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
35. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
36. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films. Wu C; Ramaswamy Y; Zhu Y; Zheng R; Appleyard R; Howard A; Zreiqat H Biomaterials; 2009 Apr; 30(12):2199-208. PubMed ID: 19203787 [TBL] [Abstract][Full Text] [Related]
37. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Mauney JR; Sjostorm S; Blumberg J; Horan R; O'Leary JP; Vunjak-Novakovic G; Volloch V; Kaplan DL Calcif Tissue Int; 2004 May; 74(5):458-68. PubMed ID: 14961210 [TBL] [Abstract][Full Text] [Related]
38. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Ayutsede J; Gandhi M; Sukigara S; Ye H; Hsu CM; Gogotsi Y; Ko F Biomacromolecules; 2006 Jan; 7(1):208-14. PubMed ID: 16398517 [TBL] [Abstract][Full Text] [Related]
39. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. Chen QZ; Efthymiou A; Salih V; Boccaccini AR J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403 [TBL] [Abstract][Full Text] [Related]
40. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Kim HJ; Kim UJ; Leisk GG; Bayan C; Georgakoudi I; Kaplan DL Macromol Biosci; 2007 May; 7(5):643-55. PubMed ID: 17477447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]