BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20122903)

  • 41. Changes in markers of neuronal and glial plasticity after cortical injury induced by food restriction.
    Loncarević-Vasiljković N; Pesić V; Tanić N; Milanović D; Popić J; Kanazir S; Ruzdijić S
    Exp Neurol; 2009 Nov; 220(1):198-206. PubMed ID: 19733562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.
    Shoykhet M; Middleton JW
    Front Neural Circuits; 2016; 10():68. PubMed ID: 27610077
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative study of the neuronal plasticity along the neuraxis of the vibrissal sensory system of adult rat following unilateral infraorbital nerve damage and subsequent regeneration.
    Kis Z; Farkas T; Rábl K; Kis E; Kóródi K; Simon L; Marusin I; Rojik I; Toldi J
    Exp Brain Res; 1999 May; 126(2):259-69. PubMed ID: 10369148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cortex dynamically modulates responses of thalamic relay neurons through prolonged circuit-level disinhibition in rat thalamus in vivo.
    Li L; Ebner FF
    J Neurophysiol; 2016 Nov; 116(5):2368-2382. PubMed ID: 27582292
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The acute phase of mild traumatic brain injury is characterized by a distance-dependent neuronal hypoactivity.
    Johnstone VP; Shultz SR; Yan EB; O'Brien TJ; Rajan R
    J Neurotrauma; 2014 Nov; 31(22):1881-95. PubMed ID: 24927383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporal pattern of neurodegeneration, programmed cell death, and neuroplastic responses in the thalamus after lateral fluid percussion brain injury in the rat.
    Dolenec P; Pilipović K; Rajič J; Župan G
    J Neuropathol Exp Neurol; 2015 Jun; 74(6):512-26. PubMed ID: 25933386
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The pattern of thalamocortical and brain stem projections to the vibrissae-related sensory and motor cortices in de-whiskered congenital hypothyroid rats.
    Afarinesh MR; Behzadi G
    Metab Brain Dis; 2017 Aug; 32(4):1223-1235. PubMed ID: 28497359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased synaptophysin expression through whisker stimulation in rat.
    Ishibashi H
    Cell Mol Neurobiol; 2002 Apr; 22(2):191-5. PubMed ID: 12363201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Medial Prefrontal Cortical Modulation of Whisker Thalamic Responses in Anesthetized Rats.
    Escudero G; Nuñez A
    Neuroscience; 2019 May; 406():626-636. PubMed ID: 30825581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of combined fluid percussion traumatic brain injury and unilateral entorhinal deafferentation on the juvenile rat brain.
    Prins ML; Povlishock JT; Phillips LL
    Brain Res Dev Brain Res; 2003 Jan; 140(1):93-104. PubMed ID: 12524180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anomalous functional organization of barrel cortex in GAP-43 deficient mice.
    Dubroff JG; Stevens RT; Hitt J; Hodge CJ; McCasland JS
    Neuroimage; 2006 Feb; 29(4):1040-8. PubMed ID: 16309923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vibrissal motor cortex in the rat: connections with the barrel field.
    Izraeli R; Porter LL
    Exp Brain Res; 1995; 104(1):41-54. PubMed ID: 7621940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuronal circuits with whisker-related patterns.
    Sehara K; Kawasaki H
    Mol Neurobiol; 2011 Jun; 43(3):155-62. PubMed ID: 21365361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial gradients and inhibitory summation in the rat whisker barrel system.
    Brumberg JC; Pinto DJ; Simons DJ
    J Neurophysiol; 1996 Jul; 76(1):130-40. PubMed ID: 8836214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neonatal whisker clipping alters behavior, neuronal structure and neural activity in adult rats.
    Chu YF; Yen CT; Lee LJ
    Behav Brain Res; 2013 Feb; 238():124-33. PubMed ID: 23098795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microscopic magnetic resonance elastography of traumatic brain injury model.
    Boulet T; Kelso ML; Othman SF
    J Neurosci Methods; 2011 Oct; 201(2):296-306. PubMed ID: 21871490
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brain-derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits.
    Blaha GR; Raghupathi R; Saatman KE; McIntosh TK
    Neuroscience; 2000; 99(3):483-93. PubMed ID: 11029540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pericontusion axon sprouting is spatially and temporally consistent with a growth-permissive environment after traumatic brain injury.
    Harris NG; Mironova YA; Hovda DA; Sutton RL
    J Neuropathol Exp Neurol; 2010 Feb; 69(2):139-54. PubMed ID: 20084019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission.
    Unichenko P; Kirischuk S; Yang JW; Baumgart J; Roskoden T; Schneider P; Sommer A; Horta G; Radyushkin K; Nitsch R; Vogt J; Luhmann HJ
    Cereb Cortex; 2016 Jul; 26(7):3260-72. PubMed ID: 26980613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.