These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20122918)

  • 1. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.
    Calestani C; Rogers DJ
    Dev Biol; 2010 Apr; 340(2):249-55. PubMed ID: 20122918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification.
    Ransick A; Davidson EH
    Dev Biol; 2006 Sep; 297(2):587-602. PubMed ID: 16925988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo.
    Amore G; Davidson EH
    Dev Biol; 2006 May; 293(2):555-64. PubMed ID: 16574094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH; Luo YJ; Su YH
    Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes.
    Solek CM; Oliveri P; Loza-Coll M; Schrankel CS; Ho EC; Wang G; Rast JP
    Dev Biol; 2013 Oct; 382(1):280-92. PubMed ID: 23792116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo.
    Wei Z; Angerer LM; Gagnon ML; Angerer RC
    Dev Biol; 1995 Sep; 171(1):195-211. PubMed ID: 7556896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.
    Martin EL; Consales C; Davidson EH; Arnone MI
    Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility of transcription factor target site position in conserved cis-regulatory modules.
    Cameron RA; Davidson EH
    Dev Biol; 2009 Dec; 336(1):122-35. PubMed ID: 19766623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening.
    Calestani C; Rast JP; Davidson EH
    Development; 2003 Oct; 130(19):4587-96. PubMed ID: 12925586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P16 is an essential regulator of skeletogenesis in the sea urchin embryo.
    Cheers MS; Ettensohn CA
    Dev Biol; 2005 Jul; 283(2):384-96. PubMed ID: 15935341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors.
    Lee PY; Davidson EH
    Gene Expr Patterns; 2004 Dec; 5(2):161-5. PubMed ID: 15567710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus.
    EgaƱa AL; Ernst SG
    Dev Dyn; 2004 Oct; 231(2):370-8. PubMed ID: 15366014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.