These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 20123030)
1. Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. Hedden T; Gabrieli JD Neuroimage; 2010 May; 51(1):421-31. PubMed ID: 20123030 [TBL] [Abstract][Full Text] [Related]
2. Neural networks of response shifting: influence of task speed and stimulus material. Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867 [TBL] [Abstract][Full Text] [Related]
3. The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution. Seo R; Stocco A; Prat CS Neuroimage; 2018 Jul; 174():44-56. PubMed ID: 29486320 [TBL] [Abstract][Full Text] [Related]
4. Inhibit, switch, and update: A within-subject fMRI investigation of executive control. Lemire-Rodger S; Lam J; Viviano JD; Stevens WD; Spreng RN; Turner GR Neuropsychologia; 2019 Sep; 132():107134. PubMed ID: 31299188 [TBL] [Abstract][Full Text] [Related]
5. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network. Jarvstad A; Gilchrist ID J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684 [TBL] [Abstract][Full Text] [Related]
6. Exploring the unity and diversity of the neural substrates of executive functioning. Collette F; Van der Linden M; Laureys S; Delfiore G; Degueldre C; Luxen A; Salmon E Hum Brain Mapp; 2005 Aug; 25(4):409-23. PubMed ID: 15852470 [TBL] [Abstract][Full Text] [Related]
7. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study. Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208 [TBL] [Abstract][Full Text] [Related]
8. Functional correlates of distractor suppression during spatial working memory encoding. Toepper M; Gebhardt H; Beblo T; Thomas C; Driessen M; Bischoff M; Blecker CR; Vaitl D; Sammer G Neuroscience; 2010 Feb; 165(4):1244-53. PubMed ID: 19925856 [TBL] [Abstract][Full Text] [Related]
9. Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage. Tsuchida A; Fellows LK Cortex; 2013; 49(7):1790-800. PubMed ID: 23206529 [TBL] [Abstract][Full Text] [Related]
10. The Role of Primate Prefrontal Cortex in Bias and Shift Between Visual Dimensions. Mansouri FA; Buckley MJ; Fehring DJ; Tanaka K Cereb Cortex; 2020 Jan; 30(1):85-99. PubMed ID: 31220222 [TBL] [Abstract][Full Text] [Related]
12. A long-range fronto-parietal 5- to 10-Hz network predicts "top-down" controlled guidance in a task-switch paradigm. Phillips JM; Vinck M; Everling S; Womelsdorf T Cereb Cortex; 2014 Aug; 24(8):1996-2008. PubMed ID: 23448872 [TBL] [Abstract][Full Text] [Related]
13. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. van Schouwenburg MR; den Ouden HE; Cools R Cereb Cortex; 2015 Jun; 25(6):1527-34. PubMed ID: 24343891 [TBL] [Abstract][Full Text] [Related]
14. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping. Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387 [TBL] [Abstract][Full Text] [Related]
16. Reduced task-related functional connectivity during a set-shifting task in unmedicated early-stage Parkinson's disease patients. de Bondt CC; Gerrits NJ; Veltman DJ; Berendse HW; van den Heuvel OA; van der Werf YD BMC Neurosci; 2016 May; 17(1):20. PubMed ID: 27194153 [TBL] [Abstract][Full Text] [Related]
17. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis. Cojan Y; Piguet C; Vuilleumier P Neuroimage; 2015 Aug; 117():367-74. PubMed ID: 26049149 [TBL] [Abstract][Full Text] [Related]
18. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity. Meyer KN; Du F; Parks E; Hopfinger JB Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803 [TBL] [Abstract][Full Text] [Related]
19. Common regions of dorsal anterior cingulate and prefrontal-parietal cortices provide attentional control of distracters varying in emotionality and visibility. Luo Q; Mitchell D; Jones M; Mondillo K; Vythilingam M; Blair RJ Neuroimage; 2007 Nov; 38(3):631-9. PubMed ID: 17889565 [TBL] [Abstract][Full Text] [Related]
20. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Niendam TA; Laird AR; Ray KL; Dean YM; Glahn DC; Carter CS Cogn Affect Behav Neurosci; 2012 Jun; 12(2):241-68. PubMed ID: 22282036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]