These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20123105)

  • 1. A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis.
    Richards EH; Paulina Dani M
    J Invertebr Pathol; 2010 May; 104(1):51-7. PubMed ID: 20123105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant immunosuppressive protein from Pimpla hypochondrica venom (rVPr1) increases the susceptibility of Mamestra brassicae larvae to the fungal biological control agent, Beauveria bassiana.
    Richards EH; Bradish H; Dani MP; Pietravalle S; Lawson A
    Arch Insect Biochem Physiol; 2011 Nov; 78(3):119-31. PubMed ID: 21948634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunosuppressive properties of a protein (rVPr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca: Mechanism of action and potential use for improving biological control strategies.
    Richards EH; Dani MP; Bradish H
    J Insect Physiol; 2013 Feb; 59(2):213-22. PubMed ID: 22698823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Venom from the pupal endoparasitoid, Pimpla hypochondriaca, increases the susceptibility of larval Lacanobia oleracea to the entomopathogens Bacillus cereus and Beauveria bassiana.
    Dani MP; Richards EH; Edwards JP
    J Invertebr Pathol; 2004; 86(1-2):19-25. PubMed ID: 15145247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mutation R(423)S in the Bacillus thuringiensis hybrid toxin CryAAC slightly increases toxicity for Mamestra brassicae L.
    Ayra-Pardo C; Davis P; Ellar DJ
    J Invertebr Pathol; 2007 May; 95(1):41-7. PubMed ID: 17306294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae.
    Prabhakar A; Bishop AH
    J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A delta-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity.
    Peng R; Xiong A; Li X; Fuan H; Yao Q
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):300-6. PubMed ID: 14556036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, cloning and expression of a second gene (vpr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca that displays immunosuppressive activity.
    Dani MP; Richards EH
    J Insect Physiol; 2010 Feb; 56(2):195-203. PubMed ID: 19837078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella.
    Mahbubur Rahman M; Roberts HL; Schmidt O
    J Invertebr Pathol; 2007 Oct; 96(2):125-32. PubMed ID: 17499761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variation in fitness parameters associated with resistance to Bacillus thuringiensis in male and female Trichoplusia ni.
    Janmaat AF; Myers JH
    J Invertebr Pathol; 2011 May; 107(1):27-32. PubMed ID: 21219907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT; Lereclus D; Arantes OM
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control.
    Roh JY; Choi JY; Li MS; Jin BR; Je YH
    J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A.
    Yue C; Sun M; Yu Z
    Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella.
    Raymond B; Sayyed AH; Wright DJ
    J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan.
    Srinivasan R
    J Invertebr Pathol; 2008 Jan; 97(1):79-81. PubMed ID: 17689558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the nematode Phasmarhabditis hermaphrodita and of venom from the endoparasitic wasp Pimpla hypochondriaca on survival and food consumption of the pest slug Deroceras reticulatum; implications for novel biocontrol strategies.
    Richards EH; DeMarzo D; Port GR; Dani MP; Walters KF
    Pest Manag Sci; 2008 Jul; 64(7):711-9. PubMed ID: 18508383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].
    Sauka DH; Benintende GB
    Rev Argent Microbiol; 2008; 40(2):124-40. PubMed ID: 18705497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti larvae in the northeast region of Thailand.
    Pipitgool V; Maleewong W; Daenseegaew W; Thaiklar K
    Southeast Asian J Trop Med Public Health; 1991 Sep; 22(3):426-8. PubMed ID: 1818396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae.
    Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB
    Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of plasmid pBC16 between Bacillus thuringiensis strains in non-susceptible larvae.
    Thomas DJ; Morgan JA; Whipps JM; Saunders JR
    FEMS Microbiol Ecol; 2002 Jun; 40(3):181-90. PubMed ID: 19709226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.