BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20123125)

  • 1. Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes.
    Terhag J; Cavara NA; Hollmann M
    Methods; 2010 May; 51(1):66-74. PubMed ID: 20123125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous transport systems in the Xenopus laevis oocyte plasma membrane.
    Sobczak K; Bangel-Ruland N; Leier G; Weber WM
    Methods; 2010 May; 51(1):183-9. PubMed ID: 19963061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenopus oocyte electrophysiology in GPCR drug discovery.
    Hansen KB; Bräuner-Osborne H
    Methods Mol Biol; 2009; 552():343-57. PubMed ID: 19513662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of monomethyltin and dimethyltin compounds on heterologously expressed neuronal ion channels (Xenopus oocytes) and synaptic transmission (hippocampal slices).
    Krüger K; Höing T; Bensch W; Diepgrond V; Ahnefeld M; Madeja M; Binding N; Musshoff U
    Neurotoxicology; 2007 Jan; 28(1):114-25. PubMed ID: 16989903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.
    Tammaro P; Shimomura K; Proks P
    Methods Mol Biol; 2008; 491():127-39. PubMed ID: 18998089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes.
    Martínez-Torres A; Miledi R
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5120-4. PubMed ID: 16549772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mitochondrial ion channels].
    Skalska J; Debska-Vielhaber G; Głab M; Kulawiak B; Malińska D; Koszela-Piotrowska I; Bednarczyk P; Dołowy K; Szewczyk A
    Postepy Biochem; 2006; 52(2):137-44. PubMed ID: 17078503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into Xenopus oocytes: a potent tool for expanding functional information.
    Eusebi F; Palma E; Amici M; Miledi R
    Prog Neurobiol; 2009 May; 88(1):32-40. PubMed ID: 19428960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inwardly rectifying and voltage-gated outward potassium channels exhibit low sensitivity to methylmercury.
    Yuan Y; Otero-Montañez JK; Yao A; Herden CJ; Sirois JE; Atchison WD
    Neurotoxicology; 2005 Jun; 26(3):439-54. PubMed ID: 15935214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of calcium activated chloride current fluctuations in Xenopus laevis oocytes.
    Kristian T; Kolaj M; Poledna J
    Gen Physiol Biophys; 1991 Jun; 10(3):265-80. PubMed ID: 1717342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion selectivity of pore-forming peptides and ion channels measured in Xenopus oocytes.
    Cens T; Charnet P
    Methods Mol Biol; 2014; 1183():355-69. PubMed ID: 25023320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of Musca glutamate- and GABA-gated chloride channels expressed independently and coexpressed in Xenopus oocytes.
    Eguchi Y; Ihara M; Ochi E; Shibata Y; Matsuda K; Fushiki S; Sugama H; Hamasaki Y; Niwa H; Wada M; Ozoe F; Ozoe Y
    Insect Mol Biol; 2006 Dec; 15(6):773-83. PubMed ID: 17201770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus Oocytes: Optimized Methods for Microinjection, Removal of Follicular Cell Layers, and Fast Solution Changes in Electrophysiological Experiments.
    Maldifassi MC; Wongsamitkul N; Baur R; Sigel E
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28117773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals.
    Krüger K; Gruner J; Madeja M; Hartmann LM; Hirner AV; Binding N; Musshoff U
    Arch Toxicol; 2006 Aug; 80(8):492-501. PubMed ID: 16474957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential ion current activation by human 5-HT(1A) receptors in Xenopus oocytes: evidence for agonist-directed trafficking of receptor signalling.
    Heusler P; Pauwels PJ; Wurch T; Newman-Tancredi A; Tytgat J; Colpaert FC; Cussac D
    Neuropharmacology; 2005 Dec; 49(7):963-76. PubMed ID: 15964603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides.
    Buckingham SD; Pym L; Sattelle DB
    Methods Mol Biol; 2006; 322():331-45. PubMed ID: 16739734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A voltage-clamp study on voltage-gated calcium channels translated in Xenopus oocytes by rat brain mRNA].
    Yao Y; Zhu H; Yang YS; Bao YD
    Sheng Li Xue Bao; 1993 Feb; 45(1):44-54. PubMed ID: 8389058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for studying voltage-gated sodium channels in heterologous expression systems.
    Dice MS; Kearl T; Ruben PC
    Methods Mol Med; 2006; 129():163-85. PubMed ID: 17085811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.
    Vandendriessche T; Abdel-Mottaleb Y; Maertens C; Cuypers E; Sudau A; Nubbemeyer U; Mebs D; Tytgat J
    Toxicon; 2008 Mar; 51(3):334-44. PubMed ID: 18061227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.