These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 20123137)

  • 1. Development, comparative structural analysis, and first in vivo evaluation of acellular implanted highly compacted fibrin tubes for arterial bypass grafting.
    Regenberg MC; Wilhelmi M; Hilfiker A; Haverich A; Aper T
    J Mech Behav Biomed Mater; 2023 Dec; 148():106199. PubMed ID: 37922760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineered human blood vessels.
    Niklason LE; Lawson JH
    Science; 2020 Oct; 370(6513):. PubMed ID: 33033191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration.
    Zhu M; Li W; Dong X; Yuan X; Midgley AC; Chang H; Wang Y; Wang H; Wang K; Ma PX; Wang H; Kong D
    Nat Commun; 2019 Oct; 10(1):4620. PubMed ID: 31604958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tissue-Engineered Vascular Graft-Past, Present, and Future.
    Pashneh-Tala S; MacNeil S; Claeyssens F
    Tissue Eng Part B Rev; 2016 Feb; 22(1):68-100. PubMed ID: 26447530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold.
    Furukoshi M; Moriwaki T; Nakayama Y
    J Artif Organs; 2016 Mar; 19(1):54-61. PubMed ID: 26265146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of human autologous tubular connective tissues (human biotubes) obtained from patients undergoing peritoneal dialysis.
    Nakayama Y; Kaneko Y; Takewa Y; Okumura N
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1431-7. PubMed ID: 26227350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode.
    Brown TD; Slotosch A; Thibaudeau L; Taubenberger A; Loessner D; Vaquette C; Dalton PD; Hutmacher DW
    Biointerphases; 2012 Dec; 7(1-4):13. PubMed ID: 22589056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering.
    Zhi D; Cheng Q; Midgley AC; Zhang Q; Wei T; Li Y; Wang T; Ma T; Rafique M; Xia S; Cao Y; Li Y; Li J; Che Y; Zhu M; Wang K; Kong D
    Sci Adv; 2022 Mar; 8(11):eabl3888. PubMed ID: 35294246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of inductive effect of lipopolysaccharide and in situ mechanical conditioning for forming an autologous vascular graft in vivo.
    Chen CL; Guo HR; Wang YJ; Chang HT; Pan CY; Tuan-Mu HY; Lin HC; Chen CY; Hu JJ
    Sci Rep; 2019 Jul; 9(1):10616. PubMed ID: 31337832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A short discourse on vascular tissue engineering.
    Chang WG; Niklason LE
    NPJ Regen Med; 2017; 2():. PubMed ID: 29057097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo.
    Geelhoed WJ; Moroni L; Rotmans JI
    J Cardiovasc Transl Res; 2017 Apr; 10(2):167-179. PubMed ID: 28205013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold.
    Funayama M; Furukoshi M; Moriwaki T; Nakayama Y
    J Artif Organs; 2015 Dec; 18(4):382-6. PubMed ID: 26233653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo study of a gold nanocomposite biomaterial for vascular repair.
    Ostdiek AM; Ivey JR; Grant DA; Gopaldas J; Grant SA
    Biomaterials; 2015 Oct; 65():175-83. PubMed ID: 26164402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short stimulation of electro-responsive PAA/fibrin hydrogel induces collagen production.
    Rahimi N; Swennen G; Verbruggen S; Scibiorek M; Molin DG; Post MJ
    Tissue Eng Part C Methods; 2014 Sep; 20(9):703-13. PubMed ID: 24341313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of vascular tissue engineering and current state of the art.
    Peck M; Gebhart D; Dusserre N; McAllister TN; L'Heureux N
    Cells Tissues Organs; 2012; 195(1-2):144-58. PubMed ID: 21996786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials.
    McKenna KA; Hinds MT; Sarao RC; Wu PC; Maslen CL; Glanville RW; Babcock D; Gregory KW
    Acta Biomater; 2012 Jan; 8(1):225-33. PubMed ID: 21846510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclically stretching developing tissue in vivo enhances mechanical strength and organization of vascular grafts.
    Stickler P; De Visscher G; Mesure L; Famaey N; Martin D; Campbell JH; Van Oosterwyck H; Meuris B; Flameng W
    Acta Biomater; 2010 Jul; 6(7):2448-56. PubMed ID: 20123137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling.
    Rabkin E; Hoerstrup SP; Aikawa M; Mayer JE; Schoen FJ
    J Heart Valve Dis; 2002 May; 11(3):308-14; discussion 314. PubMed ID: 12056720
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.