These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Compressed classification learning with Markov chain samples. Cao F; Dai T; Zhang Y; Tan Y Neural Netw; 2014 Feb; 50():90-7. PubMed ID: 24321614 [TBL] [Abstract][Full Text] [Related]
44. Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Jian L; Xia Z; Liang X; Gao C Neural Netw; 2011 Jun; 24(5):476-83. PubMed ID: 21441012 [TBL] [Abstract][Full Text] [Related]
45. Hierarchically clustered adaptive quantization CMAC and its learning convergence. Teddy SD; Lai EM; Quek C IEEE Trans Neural Netw; 2007 Nov; 18(6):1658-82. PubMed ID: 18051184 [TBL] [Abstract][Full Text] [Related]
46. Pruning and model-selecting algorithms in the RBF frameworks constructed by support vector learning. Hao PY; Chiang JH Int J Neural Syst; 2006 Aug; 16(4):283-93. PubMed ID: 16972316 [TBL] [Abstract][Full Text] [Related]
47. A support vector machine using the lazy learning approach for multi-class classification. Comak E; Arslan A J Med Eng Technol; 2006; 30(2):73-7. PubMed ID: 16531345 [TBL] [Abstract][Full Text] [Related]
48. Face recognition using total margin-based adaptive fuzzy support vector machines. Liu YH; Chen YT IEEE Trans Neural Netw; 2007 Jan; 18(1):178-92. PubMed ID: 17278471 [TBL] [Abstract][Full Text] [Related]
49. Maxi-min margin machine: learning large margin classifiers locally and globally. Huang K; Yang H; King I; Lyu MR IEEE Trans Neural Netw; 2008 Feb; 19(2):260-72. PubMed ID: 18269957 [TBL] [Abstract][Full Text] [Related]
50. The Q-norm complexity measure and the minimum gradient method: a novel approach to the machine learning structural risk minimization problem. Vieira DA; Takahashi RH; Palade V; Vasconcelos JA; Caminhas WM IEEE Trans Neural Netw; 2008 Aug; 19(8):1415-30. PubMed ID: 18701371 [TBL] [Abstract][Full Text] [Related]
51. Stochastic subset selection for learning with kernel machines. Rhinelander J; Liu XP IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):616-26. PubMed ID: 22049369 [TBL] [Abstract][Full Text] [Related]
52. An adaptive multiobjective approach to evolving ART architectures. Kaylani A; Georgiopoulos M; Mollaghasemi M; Anagnostopoulos GC; Sentelle C IEEE Trans Neural Netw; 2010 Apr; 21(4):529-50. PubMed ID: 20172827 [TBL] [Abstract][Full Text] [Related]
53. Simultaneous pattern classification and multidomain association using self-structuring kernel memory networks. Hoya T; Washizawa Y IEEE Trans Neural Netw; 2007 May; 18(3):732-44. PubMed ID: 17526340 [TBL] [Abstract][Full Text] [Related]
54. Why neural networks should not be used for HIV-1 protease cleavage site prediction. Rögnvaldsson T; You L Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129 [TBL] [Abstract][Full Text] [Related]
55. Incremental training of support vector machines. Shilton A; Palaniswami M; Ralph D; Tsoi AC IEEE Trans Neural Netw; 2005 Jan; 16(1):114-31. PubMed ID: 15732393 [TBL] [Abstract][Full Text] [Related]
56. Asymptotic analysis of Bayesian generalization error with Newton diagram. Yamazaki K; Aoyagi M; Watanabe S Neural Netw; 2010 Jan; 23(1):35-43. PubMed ID: 19692207 [TBL] [Abstract][Full Text] [Related]
58. The S(2)-Ensemble Fusion Algorithm. Baruque B; Corchado E; Yin H Int J Neural Syst; 2011 Dec; 21(6):505-25. PubMed ID: 22131302 [TBL] [Abstract][Full Text] [Related]
59. A probabilistic active support vector learning algorithm. Mitra P; Murthy CA; Pal SK IEEE Trans Pattern Anal Mach Intell; 2004 Mar; 26(3):413-8. PubMed ID: 15376888 [TBL] [Abstract][Full Text] [Related]
60. Multiple model regression estimation. Cherkassky V; Ma Y IEEE Trans Neural Netw; 2005 Jul; 16(4):785-98. PubMed ID: 16121721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]