These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20123700)

  • 1. Novel proteasome inhibitors as potential drugs to combat tuberculosis.
    Cheng Y; Pieters J
    J Mol Cell Biol; 2010 Aug; 2(4):173-5. PubMed ID: 20123700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.
    Darwin KH; Ehrt S; Gutierrez-Ramos JC; Weich N; Nathan CF
    Science; 2003 Dec; 302(5652):1963-6. PubMed ID: 14671303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiology. Chemical warfare and mycobacterial defense.
    Pieters J; Ploegh H
    Science; 2003 Dec; 302(5652):1900-2. PubMed ID: 14671281
    [No Abstract]   [Full Text] [Related]  

  • 4. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery.
    Sharma A; Khuller GK; Sharma S
    Expert Opin Ther Targets; 2009 Jul; 13(7):753-65. PubMed ID: 19530983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis gyrase inhibitors as a new class of antitubercular drugs.
    Blanco D; Perez-Herran E; Cacho M; Ballell L; Castro J; González Del Río R; Lavandera JL; Remuiñán MJ; Richards C; Rullas J; Vázquez-Muñiz MJ; Woldu E; Zapatero-González MC; Angulo-Barturen I; Mendoza A; Barros D
    Antimicrob Agents Chemother; 2015 Apr; 59(4):1868-75. PubMed ID: 25583730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel targets in M. tuberculosis: search for new drugs.
    Lamichhane G
    Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis.
    Wang X; Wang H; Xie J
    Sci China Life Sci; 2011 Apr; 54(4):300-10. PubMed ID: 21267668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-content imaging of Mycobacterium tuberculosis-infected macrophages: an in vitro model for tuberculosis drug discovery.
    Christophe T; Ewann F; Jeon HK; Cechetto J; Brodin P
    Future Med Chem; 2010 Aug; 2(8):1283-93. PubMed ID: 21426019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide.
    Samanovic MI; Tu S; Novák O; Iyer LM; McAllister FE; Aravind L; Gygi SP; Hubbard SR; Strnad M; Darwin KH
    Mol Cell; 2015 Mar; 57(6):984-994. PubMed ID: 25728768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial: TB drug development.
    Aldrich CC
    Curr Top Med Chem; 2012; 12(7):671. PubMed ID: 22283811
    [No Abstract]   [Full Text] [Related]  

  • 12. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis.
    Sacchettini JC; Rubin EJ; Freundlich JS
    Nat Rev Microbiol; 2008 Jan; 6(1):41-52. PubMed ID: 18079742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortening the treatment of tuberculosis.
    Mitchison DA
    Nat Biotechnol; 2005 Feb; 23(2):187-8. PubMed ID: 15696148
    [No Abstract]   [Full Text] [Related]  

  • 15. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis.
    de Steenwinkel JE; de Knegt GJ; ten Kate MT; van Belkum A; Verbrugh HA; Kremer K; van Soolingen D; Bakker-Woudenberg IA
    J Antimicrob Chemother; 2010 Dec; 65(12):2582-9. PubMed ID: 20947621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of peptide deformylase inhibitors against experimental tuberculosis.
    Sharma A; Khuller GK; Kanwar AJ; Sharma S
    J Infect; 2010 Jun; 60(6):498-501. PubMed ID: 20346970
    [No Abstract]   [Full Text] [Related]  

  • 17. Antitubercular potential of plants: a brief account of some important molecules.
    Negi AS; Kumar JK; Luqman S; Saikia D; Khanuja SP
    Med Res Rev; 2010 Jul; 30(4):603-45. PubMed ID: 19626592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of an essential mycobacterial cell wall lipase (Rv3802c) as tuberculosis drug leads.
    West NP; Cergol KM; Xue M; Randall EJ; Britton WJ; Payne RJ
    Chem Commun (Camb); 2011 May; 47(18):5166-8. PubMed ID: 21384024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium sulfur metabolism and implications for novel drug targets.
    Zeng L; Shi T; Zhao Q; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Welcome to 'Tuberculosis drug discovery and development'.
    D'Oca G
    Future Med Chem; 2010 Aug; 2(8):1241-2. PubMed ID: 21426014
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.