BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20123728)

  • 1. Streamlined determination of processive run length and mechanochemical coupling of nucleic acid motor activities.
    Gyimesi M; Sarlós K; Derényi I; Kovács M
    Nucleic Acids Res; 2010 Apr; 38(7):e102. PubMed ID: 20123728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent adaptations of fluorescence techniques for the determination of mechanistic parameters of helicases and translocases.
    Gyimesi M; Harami GM; Kocsis ZS; Kovács M
    Methods; 2016 Oct; 108():24-39. PubMed ID: 27133766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli DnaB helicase-DnaC protein complex: allosteric effects of the nucleotides on the nucleic acid binding and the kinetic mechanism of NTP hydrolysis. 3.
    Roychowdhury A; Szymanski MR; Jezewska MJ; Bujalowski W
    Biochemistry; 2009 Jul; 48(29):6747-63. PubMed ID: 19432487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1.
    Qin J; Zhang H; Geng Y; Ji Q
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32972035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of NTP hydrolysis by the Escherichia coli primary replicative helicase DnaB protein. 2. Nucleotide and nucleic acid specificities.
    Roychowdhury A; Szymanski MR; Jezewska MJ; Bujalowski W
    Biochemistry; 2009 Jul; 48(29):6730-46. PubMed ID: 19435286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically Disordered Linkers Impart Processivity on Enzymes by Spatial Confinement of Binding Domains.
    Szabo B; Horvath T; Schad E; Murvai N; Tantos A; Kalmar L; Chemes LB; Han KH; Tompa P
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31032817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processivity of nucleic acid unwinding and translocation by helicases.
    Xie P
    Proteins; 2016 Nov; 84(11):1590-1605. PubMed ID: 27410462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NTP-driven translocation and regulation of downstream template opening by multi-subunit RNA polymerases.
    Burton ZF; Feig M; Gong XQ; Zhang C; Nedialkov YA; Xiong Y
    Biochem Cell Biol; 2005 Aug; 83(4):486-96. PubMed ID: 16094452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdependence of the kinetics of NTP hydrolysis and the stability of the RecA-ssDNA complex.
    Katz FS; Bryant FR
    Biochemistry; 2001 Sep; 40(37):11082-9. PubMed ID: 11551205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity and efficiency of rho-factor helicase activity depends on magnesium concentration and energy coupling to NTP hydrolysis.
    Brennan CA; Steinmetz EJ; Spear P; Platt T
    J Biol Chem; 1990 Apr; 265(10):5440-7. PubMed ID: 1690711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics: a tool to study molecular motors.
    Gilbert SP; Mackey AT
    Methods; 2000 Dec; 22(4):337-54. PubMed ID: 11133240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical model for motility and processivity of two-headed molecular motors.
    Kanada R; Sasaki K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061917. PubMed ID: 16241271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential rates of NTP hydrolysis by the mutant [S69G]RecA protein. Evidence for a coupling of NTP turnover to DNA strand exchange.
    Nayak S; Bryant FR
    J Biol Chem; 1999 Sep; 274(37):25979-82. PubMed ID: 10473540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the mechanisms of myosin and kinesin molecular motors from the single-molecule unbinding force measurements.
    Mikhailenko SV; Oguchi Y; Ishiwata S
    J R Soc Interface; 2010 Jun; 7 Suppl 3(Suppl 3):S295-306. PubMed ID: 20356879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hopping and stalling of processive molecular motors.
    Imafuku Y; Thomas N; Tawada K
    J Theor Biol; 2009 Nov; 261(1):43-9. PubMed ID: 19627996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleic acid unwinding by hepatitis C virus and bacteriophage t7 helicases is sensitive to base pair stability.
    Donmez I; Rajagopal V; Jeong YJ; Patel SS
    J Biol Chem; 2007 Jul; 282(29):21116-23. PubMed ID: 17504766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of mechanochemical coupling in a hexameric molecular motor.
    Kainov DE; Mancini EJ; Telenius J; Lísal J; Grimes JM; Bamford DH; Stuart DI; Tuma R
    J Biol Chem; 2008 Feb; 283(6):3607-3617. PubMed ID: 18057007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helicase-catalyzed DNA unwinding: energy coupling by DNA motor proteins.
    Moore KJ; Lohman TM
    Biophys J; 1995 Apr; 68(4 Suppl):180S-184S; discussion 184S-185S. PubMed ID: 7787063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-dependent translocation of proteins along single-stranded DNA: models and methods of analysis of pre-steady state kinetics.
    Fischer CJ; Lohman TM
    J Mol Biol; 2004 Dec; 344(5):1265-86. PubMed ID: 15561143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superfamily I helicases as modular components of DNA-processing machines.
    Dillingham MS
    Biochem Soc Trans; 2011 Apr; 39(2):413-23. PubMed ID: 21428912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.