BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20123994)

  • 1. Autonomous right-screw rotation of growth cone filopodia drives neurite turning.
    Tamada A; Kawase S; Murakami F; Kamiguchi H
    J Cell Biol; 2010 Feb; 188(3):429-41. PubMed ID: 20123994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin IIB is required for growth cone motility.
    Bridgman PC; Dave S; Asnes CF; Tullio AN; Adelstein RS
    J Neurosci; 2001 Aug; 21(16):6159-69. PubMed ID: 11487639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filopodial calcium transients promote substrate-dependent growth cone turning.
    Gomez TM; Robles E; Poo M; Spitzer NC
    Science; 2001 Mar; 291(5510):1983-7. PubMed ID: 11239161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human myosin VIIa is a very slow processive motor protein on various cellular actin structures.
    Sato O; Komatsu S; Sakai T; Tsukasaki Y; Tanaka R; Mizutani T; Watanabe TM; Ikebe R; Ikebe M
    J Biol Chem; 2017 Jun; 292(26):10950-10960. PubMed ID: 28507101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth.
    Jang KJ; Kim MS; Feltrin D; Jeon NL; Suh KY; Pertz O
    PLoS One; 2010 Dec; 5(12):e15966. PubMed ID: 21209862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the role of myosin 1c in neuronal growth cone turning.
    Wang FS; Liu CW; Diefenbach TJ; Jay DG
    Biophys J; 2003 Nov; 85(5):3319-28. PubMed ID: 14581233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.
    Rösner H; Möller W; Wassermann T; Mihatsch J; Blum M
    Brain Res; 2007 Oct; 1176():1-10. PubMed ID: 17888886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myo10 tail is crucial for promoting long filopodia.
    Chen X; Arciola JM; Lee YI; Wong PHP; Yin H; Tao Q; Jin Y; Qin X; Sweeney HL; Park H
    J Biol Chem; 2024 Jan; 300(1):105523. PubMed ID: 38043799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local calcium changes regulate the length of growth cone filopodia.
    Cheng S; Geddis MS; Rehder V
    J Neurobiol; 2002 Mar; 50(4):263-75. PubMed ID: 11891662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo.
    Sahasrabudhe A; Ghate K; Mutalik S; Jacob A; Ghose A
    Development; 2016 Feb; 143(3):449-60. PubMed ID: 26718007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry.
    Rajnicek AM; Foubister LE; McCaig CD
    J Cell Sci; 2006 May; 119(Pt 9):1736-45. PubMed ID: 16595545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension.
    Robles E; Woo S; Gomez TM
    J Neurosci; 2005 Aug; 25(33):7669-81. PubMed ID: 16107653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UNC-45A is required for neurite extension via controlling NMII activation.
    Iizuka Y; Mooneyham A; Sieben A; Chen K; Maile M; Hellweg R; Schütz F; Teckle K; Starr T; Thayanithy V; Vogel RI; Lou E; Lee MK; Bazzaro M
    Mol Biol Cell; 2017 May; 28(10):1337-1346. PubMed ID: 28356421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine.
    Kuhn TB; Brown MD; Bamburg JR
    J Neurobiol; 1998 Dec; 37(4):524-40. PubMed ID: 9858256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filopodial adhesion does not predict growth cone steering events in vivo.
    Isbister CM; O'Connor TP
    J Neurosci; 1999 Apr; 19(7):2589-600. PubMed ID: 10087072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility.
    Berg JS; Cheney RE
    Nat Cell Biol; 2002 Mar; 4(3):246-50. PubMed ID: 11854753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting filopodial elongation in neurons by membrane-bound magnetic nanoparticles.
    Pita-Thomas W; Steketee MB; Moysidis SN; Thakor K; Hampton B; Goldberg JL
    Nanomedicine; 2015 Apr; 11(3):559-67. PubMed ID: 25596077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones.
    Geddis MS; Tornieri K; Giesecke A; Rehder V
    Cell Motil Cytoskeleton; 2004 Jan; 57(1):53-67. PubMed ID: 14648557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.