BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20124315)

  • 1. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction.
    Bac BH; Song Y; Moon Y; Kim MH; Kang IM
    Waste Manag Res; 2010 Aug; 28(8):714-22. PubMed ID: 20124315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.
    Fan Y; Zhang FS; Zhu J; Liu Z
    J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material.
    Etoh J; Kawagoe T; Shimaoka T; Watanabe K
    Waste Manag; 2009 Mar; 29(3):1048-57. PubMed ID: 18845427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction.
    Font O; Moreno N; Díez S; Querol X; López-Soler A; Coca P; Peña FG
    J Hazard Mater; 2009 Jul; 166(1):94-102. PubMed ID: 19097700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zeolite NaP1 synthesized from municipal solid waste incineration fly ash for photocatalytic degradation of methylene blue.
    Chen Q; Zhao Y; Qiu Q; Long L; Liu X; Lin S; Jiang X
    Environ Res; 2023 Feb; 218():114873. PubMed ID: 36504006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of high-quality NaP1 zeolite from municipal solid waste incineration fly ash by microwave-assisted hydrothermal method and its adsorption capacity.
    Zhou Q; Jiang X; Qiu Q; Zhao Y; Long L
    Sci Total Environ; 2023 Jan; 855():158741. PubMed ID: 36115393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behaviour of heavy metals immobilized by co-melting treatment of sewage sludge ash and municipal solid waste incinerator fly ash.
    Lin KL; Huang WJ; Chen KC; Chow JD; Chen HJ
    Waste Manag Res; 2009 Oct; 27(7):660-7. PubMed ID: 19470538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.
    Chou JD; Wey MY; Liang HH; Chang SH
    J Hazard Mater; 2009 Aug; 168(1):197-202. PubMed ID: 19264394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process.
    Chiang KY; Hu YH
    Waste Manag; 2010 May; 30(5):831-8. PubMed ID: 20079621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan.
    Huang CM; Yang WF; Ma HW; Song YR
    Waste Manag; 2006; 26(9):979-87. PubMed ID: 16297611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management.
    Klein R; Baumann T; Kahapka E; Niessner R
    J Hazard Mater; 2001 May; 83(3):265-80. PubMed ID: 11348737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [MSW incineration fly ash melting by DSC-DTA].
    Li R; Chi Y; Li S; Wang L; Yan J; Cen K
    Huan Jing Ke Xue; 2002 Jul; 23(4):113-7. PubMed ID: 12371091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash.
    Lin KL; Chen BY
    J Hazard Mater; 2006 Nov; 138(1):9-15. PubMed ID: 16822611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal behaviour of ESP ash from municipal solid waste incinerators.
    Yang Y; Xiao Y; Wilson N; Voncken JH
    J Hazard Mater; 2009 Jul; 166(1):567-75. PubMed ID: 19150174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization.
    Sicong T; Jianguo J; Chang Z
    J Hazard Mater; 2011 Sep; 192(3):1609-15. PubMed ID: 21782326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash.
    Lancellotti I; Kamseu E; Michelazzi M; Barbieri L; Corradi A; Leonelli C
    Waste Manag; 2010 Apr; 30(4):673-9. PubMed ID: 19879748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal treatment of bottom ash from the incineration of municipal solid waste: retention of Cs(I), Cd(II), Pb(II) and Cr(III).
    Peña R; Guerrero A; Goñi S
    J Hazard Mater; 2006 Feb; 129(1-3):151-7. PubMed ID: 16194594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site.
    Dabo D; Badreddine R; De Windt L; Drouadaine I
    J Hazard Mater; 2009 Dec; 172(2-3):904-13. PubMed ID: 19733006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.