These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20124321)

  • 21. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion.
    Assamoi B; Lawryshyn Y
    Waste Manag; 2012 May; 32(5):1019-30. PubMed ID: 22099926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.
    Brinck K; Poulsen TG; Skov H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on greenhouse gas emissions from urban waste disposal system: a case study in Xiamen].
    Yu Y; Cui SH; Lin JY; Li F
    Huan Jing Ke Xue; 2012 Sep; 33(9):3288-94. PubMed ID: 23243894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. European trends in greenhouse gases emissions from integrated solid waste management.
    Calabrò PS; Gori M; Lubello C
    Environ Technol; 2015; 36(13-16):2125-37. PubMed ID: 25704238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emission of greenhouse gases from anaerobic digestion processes: comparison with other municipal solid waste treatments.
    Baldasano JM; Soriano C
    Water Sci Technol; 2000; 41(3):275-82. PubMed ID: 11382002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok.
    Menikpura SN; Sang-Arun J; Bengtsson M
    Waste Manag Res; 2013 Oct; 31(10):1002-11. PubMed ID: 23797299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.
    Ngnikam E; Tanawa E; Rousseaux P; Riedacker A; Gourdon R
    Waste Manag Res; 2002 Dec; 20(6):501-13. PubMed ID: 12549662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electricity and combined heat and power from municipal solid waste; theoretically optimal investment decision time and emissions trading implications.
    Tolis A; Rentizelas A; Aravossis K; Tatsiopoulos I
    Waste Manag Res; 2010 Nov; 28(11):985-95. PubMed ID: 20516003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea.
    Ryu C
    J Air Waste Manag Assoc; 2010 Feb; 60(2):176-83. PubMed ID: 20222530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of reduced greenhouse gas emission from municipal solid waste incineration with electricity recovery in prefecture- and county-level cities of China.
    Zhao Q; Tang W; Han M; Cui W; Zhu L; Xie H; Li W; Wu F
    Sci Total Environ; 2023 Jun; 875():162654. PubMed ID: 36894103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.
    Tercan SH; Cabalar AF; Yaman G
    J Air Waste Manag Assoc; 2015 Aug; 65(8):912-8. PubMed ID: 26211632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of waste management with regard to climate protection: a case study.
    Hackl A; Mauschitz G
    Waste Manag Res; 2008 Feb; 26(1):5-10. PubMed ID: 18338698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing landfill gas (LFG) for electricity: A strategy to mitigate greenhouse gas (GHG) emissions in Jakarta (Indonesia).
    Kurniawan TA; Liang X; Singh D; Othman MHD; Goh HH; Gikas P; Kern AO; Kusworo TD; Shoqeir JA
    J Environ Manage; 2022 Jan; 301():113882. PubMed ID: 34638040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.
    de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE
    Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model analysis of energy consumption and greenhouse gas emissions of sewage sludge treatment systems with different processes and scales.
    Soda S; Iwai Y; Sei K; Shimod Y; Ike M
    Water Sci Technol; 2010; 61(2):365-73. PubMed ID: 20107263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Spatio-temporal Change in City-level Greenhouse Gas Emissions from Municipal Solid Waste Sector in China During the Last Decade and Its Potential Mitigation].
    Zhang TX; Gao SD; Teng X; Jiang XT; Chen JH; Gao CQ; Bian RX; Sun YJ; Li WH; Wang YN; Wang HW
    Huan Jing Ke Xue; 2023 Nov; 44(11):5946-5953. PubMed ID: 37973079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the characteristics of combustible fraction of legacy waste: A study on energy recovery potential and GHG emission quantification.
    Mankhair RV; Chandel MK
    Environ Res; 2024 Jun; 251(Pt 2):118669. PubMed ID: 38499221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.