These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Switchable holographic image splitter fabricated with dye-doped liquid crystals. Su WC; Hung WB; Hsiao HY Opt Express; 2013 Mar; 21(5):6640-9. PubMed ID: 23482236 [TBL] [Abstract][Full Text] [Related]
4. Fast and stable recording of birefringence and holographic gratings in an azo-polymethacrylate using a single nanosecond light pulse. Rodríguez FJ; Sánchez C; Villacampa B; Alcalá R; Cases R; Millaruelo M; Oriol L J Chem Phys; 2005 Nov; 123(20):204706. PubMed ID: 16351292 [TBL] [Abstract][Full Text] [Related]
5. Formation of bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers. Saishoji A; Sato D; Shishido A; Ikeda T Langmuir; 2007 Jan; 23(1):320-6. PubMed ID: 17190521 [TBL] [Abstract][Full Text] [Related]
6. Photoanisotropic polarization gratings beyond the small recording angle regime. Xu M; de Boer DK; van Heesch CM; Wachters AJ; Urbach HP Opt Express; 2010 Mar; 18(7):6703-21. PubMed ID: 20389693 [TBL] [Abstract][Full Text] [Related]
7. Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties. Ishiguro M; Sato D; Shishido A; Ikeda T Langmuir; 2007 Jan; 23(1):332-8. PubMed ID: 17190523 [TBL] [Abstract][Full Text] [Related]
8. Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light. Sobolewska A; Bartkiewicz S; Miniewicz A; Schab-Balcerzak E J Phys Chem B; 2010 Aug; 114(30):9751-60. PubMed ID: 20666518 [TBL] [Abstract][Full Text] [Related]
12. Time-domain analysis of optically controllable biphotonic gratings in azo-dye-doped cholesteric liquid crystals. Yeh HC Opt Express; 2011 Mar; 19(6):5500-10. PubMed ID: 21445188 [TBL] [Abstract][Full Text] [Related]
13. Recording of polarization holograms in a liquid crystal cell with a photosensitive chalcogenide orientation layer [Invited]. Sheremet N; Kurioz Y; Slyusarenko K; Trunov M; Reznikov Y Appl Opt; 2013 Aug; 52(22):E40-6. PubMed ID: 23913086 [TBL] [Abstract][Full Text] [Related]
14. High-diffraction-efficiency holographic gratings in C60-doped nematics. Zhang Y; Yao F; Pei Y; Sun X Appl Opt; 2009 Nov; 48(33):6506-10. PubMed ID: 19935973 [TBL] [Abstract][Full Text] [Related]
15. Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films. Yeh HC; Chen GH; Lee CR; Mo TS J Chem Phys; 2007 Oct; 127(14):141105. PubMed ID: 17935379 [TBL] [Abstract][Full Text] [Related]
16. Spatially resolved refractive index profiles of electrically switchable computer-generated holographic gratings. Zito G; Finizio A; De Nicola S Opt Express; 2009 Oct; 17(21):18843-51. PubMed ID: 20372618 [TBL] [Abstract][Full Text] [Related]
17. Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers. Zheng M; Xie X; Zhang Z; Shi F; Wang X; Fu S; Liu Y Appl Opt; 2014 Sep; 53(25):5815-23. PubMed ID: 25321382 [TBL] [Abstract][Full Text] [Related]
18. Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO3:Fe. Hou P; Zhi Y; Sun J; Liu L Appl Opt; 2011 Apr; 50(11):1554-9. PubMed ID: 21478928 [TBL] [Abstract][Full Text] [Related]