These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Analysis of optical damage in germanium induced by a continuous wave laser. Lee KH; Shin WS; Kang EC Appl Opt; 2013 Apr; 52(10):2055-61. PubMed ID: 23545960 [TBL] [Abstract][Full Text] [Related]
25. Potentials for progress in laser medicine. Parrish JA; Walsh JT Yale J Biol Med; 1985; 58(6):535-45. PubMed ID: 3832665 [TBL] [Abstract][Full Text] [Related]
26. Model laser damage precursors for high quality optical materials. Shen N; Bude JD; Carr CW Opt Express; 2014 Feb; 22(3):3393-404. PubMed ID: 24663629 [TBL] [Abstract][Full Text] [Related]
27. Fatigue properties of carbon- and porous-coated Ti-6Al-4V alloy. Cook SD; Georgette FS; Skinner HB; Haddad RJ J Biomed Mater Res; 1984; 18(5):497-512. PubMed ID: 6736080 [TBL] [Abstract][Full Text] [Related]
28. He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam. Sahu K; Mohanty SK; Gupta PK J Biophotonics; 2009 Mar; 2(3):140-4. PubMed ID: 19343694 [TBL] [Abstract][Full Text] [Related]
29. Laser-induced damage measurements in CdTe and other II-VI materials. Soileau MJ; Williams WE; Stryland EW; Woodall MA Appl Opt; 1982 Nov; 21(22):4059-62. PubMed ID: 20401008 [TBL] [Abstract][Full Text] [Related]
30. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses. Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737 [TBL] [Abstract][Full Text] [Related]
31. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Stubinger S; Etter C; Miskiewicz M; Homann F; Saldamli B; Wieland M; Sader R Int J Oral Maxillofac Implants; 2010; 25(1):104-11. PubMed ID: 20209192 [TBL] [Abstract][Full Text] [Related]
32. Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm. Vincelette RL; Rockwell BA; Oliver JW; Kumru SS; Thomas RJ; Schuster KJ; Noojin GD; Shingledecker AD; Stolarski DJ; Welch AJ Lasers Surg Med; 2009 Jul; 41(5):382-90. PubMed ID: 19533764 [TBL] [Abstract][Full Text] [Related]
33. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue. Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010 [TBL] [Abstract][Full Text] [Related]
34. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2). Laurence TA; Bude JD; Ly S; Shen N; Feit MD Opt Express; 2012 May; 20(10):11561-73. PubMed ID: 22565775 [TBL] [Abstract][Full Text] [Related]
35. A new compact instrument for Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopy of works of art and their constituent materials. Osticioli I; Mendes NF; Nevin A; Zoppi A; Lofrumento C; Becucci M; Castellucci EM Rev Sci Instrum; 2009 Jul; 80(7):076109. PubMed ID: 19655994 [TBL] [Abstract][Full Text] [Related]
37. Effect of etching morphology of artificial defect on laser-induced damage properties under 355 nm laser irradiation. Ma B; Lu M; Zhan G; Wang K; Cheng X; Wang Z Appl Opt; 2015 Apr; 54(11):3365-71. PubMed ID: 25967325 [TBL] [Abstract][Full Text] [Related]
38. Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces. Miller PE; Bude JD; Suratwala TI; Shen N; Laurence TA; Steele WA; Menapace J; Feit MD; Wong LL Opt Lett; 2010 Aug; 35(16):2702-4. PubMed ID: 20717429 [TBL] [Abstract][Full Text] [Related]