These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20126533)

  • 1. Protein interaction networks--more than mere modules.
    Pinkert S; Schultz J; Reichardt J
    PLoS Comput Biol; 2010 Jan; 6(1):e1000659. PubMed ID: 20126533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BinTree seeking: a novel approach to mine both bi-sparse and cohesive modules in protein interaction networks.
    Jiao QJ; Zhang YK; Li LN; Shen HB
    PLoS One; 2011; 6(11):e27646. PubMed ID: 22140454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel subgradient-based optimization algorithm for blockmodel functional module identification.
    Wang Y; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S23. PubMed ID: 23368964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J; Li C; Ye B; Zhong W
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the hidden relationship by sparse modules in complex networks with a large-scale analysis.
    Jiao QJ; Huang Y; Liu W; Wang XF; Chen XS; Shen HB
    PLoS One; 2013; 8(6):e66020. PubMed ID: 23762457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting locational and topological overlap model to identify modules in protein interaction networks.
    Cheng L; Liu P; Wang D; Leung KS
    BMC Bioinformatics; 2019 Jan; 20(1):23. PubMed ID: 30642247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks.
    Wang J; Li M; Chen J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):607-20. PubMed ID: 20733244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining functional and topological properties to identify core modules in protein interaction networks.
    Lubovac Z; Gamalielsson J; Olsson B
    Proteins; 2006 Sep; 64(4):948-59. PubMed ID: 16794996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining modular organization of protein interaction networks by maximizing modularity density.
    Zhang S; Ning XM; Ding C; Zhang XS
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S10. PubMed ID: 20840724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new multi-scale method to reveal hierarchical modular structures in biological networks.
    Jiao QJ; Huang Y; Shen HB
    Mol Biosyst; 2016 Nov; 12(12):3724-3733. PubMed ID: 27783080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative vertex clustering value--a new criterion for the fast discovery of functional modules in protein interaction networks.
    Ibrahim ZM; Ngom A
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S3. PubMed ID: 25734691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional module identification in protein interaction networks by interaction patterns.
    Wang Y; Qian X
    Bioinformatics; 2014 Jan; 30(1):81-93. PubMed ID: 24085567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of physical interactomes as uncovered by network schemas.
    Banks E; Nabieva E; Chazelle B; Singh M
    PLoS Comput Biol; 2008 Oct; 4(10):e1000203. PubMed ID: 18949022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting Functional Modules Based on a Multiple-Grain Model in Large-Scale Protein-Protein Interaction Networks.
    Ji J; Lv J; Yang C; Zhang A
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):610-22. PubMed ID: 26394434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks.
    Zhang S; Liu HW; Ning XM; Zhang XS
    Int J Data Min Bioinform; 2009; 3(1):68-84. PubMed ID: 19432377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous decomposition of protein interaction networks: refining the description of intra-modular interactions.
    Del Mondo G; Eveillard D; Rusu I
    Bioinformatics; 2009 Apr; 25(7):926-32. PubMed ID: 19223451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information flow analysis of interactome networks.
    Missiuro PV; Liu K; Zou L; Ross BC; Zhao G; Liu JS; Ge H
    PLoS Comput Biol; 2009 Apr; 5(4):e1000350. PubMed ID: 19503817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.