These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20126652)

  • 1. Favorable climate change response explains non-native species' success in Thoreau's woods.
    Willis CG; Ruhfel BR; Primack RB; Miller-Rushing AJ; Losos JB; Davis CC
    PLoS One; 2010 Jan; 5(1):e8878. PubMed ID: 20126652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant and bird phenology and plant occurrence from 1851 to 2020 (non-continuous) in Thoreau's Concord, Massachusetts.
    Ellwood ER; Gallinat AS; McDonough MacKenzie C; Miller T; Miller-Rushing AJ; Polgar C; Primack RB
    Ecology; 2022 May; 103(5):e3646. PubMed ID: 35076936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change.
    Willis CG; Ruhfel B; Primack RB; Miller-Rushing AJ; Davis CC
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17029-33. PubMed ID: 18955707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global warming and flowering times in Thoreau's Concord: a community perspective.
    Miller-Rushing AJ; Primack RB
    Ecology; 2008 Feb; 89(2):332-41. PubMed ID: 18409423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau's Concord.
    Polgar C; Gallinat A; Primack RB
    New Phytol; 2014 Apr; 202(1):106-115. PubMed ID: 24372373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing fruiting phenology across two historical datasets: Thoreau's observations and herbarium specimens.
    Miller TK; Gallinat AS; Smith LC; Primack RB
    Ann Bot; 2021 Jul; 128(2):159-170. PubMed ID: 33830225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenology in a warming world: differences between native and non-native plant species.
    Zettlemoyer MA; Schultheis EH; Lau JA
    Ecol Lett; 2019 Aug; 22(8):1253-1263. PubMed ID: 31134712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of phylogeny to the study of phenological response to global climate change.
    Davis CC; Willis CG; Primack RB; Miller-Rushing AJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3201-13. PubMed ID: 20819813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Record-breaking early flowering in the eastern United States.
    Ellwood ER; Temple SA; Primack RB; Bradley NL; Davis CC
    PLoS One; 2013; 8(1):e53788. PubMed ID: 23342001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative to climate change for explaining species loss in Thoreau's woods.
    McDonald J; Christensen S; Deblinger R; Woytek W
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):E28; author reply E29. PubMed ID: 19270076
    [No Abstract]   [Full Text] [Related]  

  • 12. Phenological niches and the future of invaded ecosystems with climate change.
    Wolkovich EM; Cleland EE
    AoB Plants; 2014 Mar; 6():. PubMed ID: 24876295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change and invasion may synergistically affect native plant reproduction.
    Giejsztowt J; Classen AT; Deslippe JR
    Ecology; 2020 Jan; 101(1):e02913. PubMed ID: 31605624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change.
    Buckley LB; Graham SI; Nufio CR
    J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term responses to warming vary between native vs. exotic species and with latitude in an early successional plant community.
    Welshofer KB; Zarnetske PL; Lany NK; Read QD
    Oecologia; 2018 May; 187(1):333-342. PubMed ID: 29550949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent climate-driven ecological change across a continent as perceived through local ecological knowledge.
    Prober SM; Raisbeck-Brown N; Porter NB; Williams KJ; Leviston Z; Dickson F
    PLoS One; 2019; 14(11):e0224625. PubMed ID: 31756177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions.
    Hulme PE
    New Phytol; 2011 Jan; 189(1):272-81. PubMed ID: 20807339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.
    Du Y; Chen J; Willis CG; Zhou Z; Liu T; Dai W; Zhao Y; Ma K
    Ecol Evol; 2017 Sep; 7(17):6747-6757. PubMed ID: 28904756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protected areas offer refuge from invasive species spreading under climate change.
    Gallardo B; Aldridge DC; González-Moreno P; Pergl J; Pizarro M; Pyšek P; Thuiller W; Yesson C; Vilà M
    Glob Chang Biol; 2017 Dec; 23(12):5331-5343. PubMed ID: 28758293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.