These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20126690)

  • 1. Wet-etching of structures with straight facets and adjustable taper into glass substrates.
    Pekas N; Zhang Q; Nannini M; Juncker D
    Lab Chip; 2010 Feb; 10(4):494-8. PubMed ID: 20126690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laminar flow used as "liquid etch mask" in wet chemical etching to generate glass microstructures with an improved aspect ratio.
    Mu X; Liang Q; Hu P; Ren K; Wang Y; Luo G
    Lab Chip; 2009 Jul; 9(14):1994-6. PubMed ID: 19568665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and chemical microfluidic gold etching to generate patterned and gradient substrates for cell adhesion and cell migration.
    Westcott NP; Lamb BM; Yousaf MN
    Anal Chem; 2009 May; 81(9):3297-303. PubMed ID: 19354293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prototyping disposable electrophoresis microchips with electrochemical detection using rapid marker masking and laminar flow etching.
    Manica DP; Ewing AG
    Electrophoresis; 2002 Nov; 23(21):3735-43. PubMed ID: 12432536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates.
    Segato TP; Coltro WK; Almeida AL; Piazetta MH; Gobbi AL; Mazo LH; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2526-33. PubMed ID: 20665913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry.
    Sorouraddin MH; Amjadi M; Safi-Shalamzari M
    Anal Chim Acta; 2007 Apr; 589(1):84-8. PubMed ID: 17397657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcontact printing-based fabrication of digital microfluidic devices.
    Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR
    Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating Multiscale Gold Nanostructures on Glass without Sidewall Deposits Using Minimal Dry Etching Steps.
    Minnikanti S; Ahn J; Obeng YS; Reyes DR
    ACS Nano; 2019 Apr; 13(4):3924-3930. PubMed ID: 30889351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterned Au/poly(dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning.
    Bai HJ; Shao ML; Gou HL; Xu JJ; Chen HY
    Langmuir; 2009 Sep; 25(17):10402-7. PubMed ID: 19415913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A toner-mediated lithographic technology for rapid prototyping of glass microchannels.
    Coltro WK; Piccin E; Fracassi da Silva JA; Lucio do Lago C; Carrilho E
    Lab Chip; 2007 Jul; 7(7):931-4. PubMed ID: 17594016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to glass microstructuring techniques.
    Mazurczyk R; Mansfield CD
    Methods Mol Biol; 2013; 949():125-40. PubMed ID: 23329440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and safe microwave-assisted glass channel-shaped microstructure fabrication.
    Zacheo A; Zizzari A; Perrone E; Carbone L; Giancane G; Valli L; Rinaldi R; Arima V
    Lab Chip; 2015 Jun; 15(11):2395-9. PubMed ID: 25920905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication.
    Chen S; Bomer JG; van der Wiel WG; Carlen ET; van den Berg A
    ACS Nano; 2009 Nov; 3(11):3485-92. PubMed ID: 19856905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned solvent delivery and etching for the fabrication of plastic microfluidic devices.
    Brister PC; Weston KD
    Anal Chem; 2005 Nov; 77(22):7478-82. PubMed ID: 16285703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the feasibility of phosphate glass and hydroxyapatite engineered coating on titanium.
    Kim HW; Lee EJ; Jun IK; Kim HE
    J Biomed Mater Res A; 2005 Dec; 75(3):656-67. PubMed ID: 16108050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery.
    Liu Y; Eng PF; Guy OJ; Roberts K; Ashraf H; Knight N
    IET Nanobiotechnol; 2013 Jun; 7(2):59-62. PubMed ID: 24046906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.
    Sultana T; Georgiev GL; Baird RJ; Auner GW; Newaz G; Patwa R; Herfurth HJ
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):237-42. PubMed ID: 19627828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glassy carbon microfluidic device for electrospray mass spectrometry.
    Ssenyange S; Taylor J; Harrison DJ; McDermott MT
    Anal Chem; 2004 Apr; 76(8):2393-7. PubMed ID: 15080753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.